14,502 research outputs found

    Learning from Logged Implicit Exploration Data

    Get PDF
    We provide a sound and consistent foundation for the use of \emph{nonrandom} exploration data in "contextual bandit" or "partially labeled" settings where only the value of a chosen action is learned. The primary challenge in a variety of settings is that the exploration policy, in which "offline" data is logged, is not explicitly known. Prior solutions here require either control of the actions during the learning process, recorded random exploration, or actions chosen obliviously in a repeated manner. The techniques reported here lift these restrictions, allowing the learning of a policy for choosing actions given features from historical data where no randomization occurred or was logged. We empirically verify our solution on two reasonably sized sets of real-world data obtained from Yahoo!

    Counterfactual Learning from Bandit Feedback under Deterministic Logging: A Case Study in Statistical Machine Translation

    Full text link
    The goal of counterfactual learning for statistical machine translation (SMT) is to optimize a target SMT system from logged data that consist of user feedback to translations that were predicted by another, historic SMT system. A challenge arises by the fact that risk-averse commercial SMT systems deterministically log the most probable translation. The lack of sufficient exploration of the SMT output space seemingly contradicts the theoretical requirements for counterfactual learning. We show that counterfactual learning from deterministic bandit logs is possible nevertheless by smoothing out deterministic components in learning. This can be achieved by additive and multiplicative control variates that avoid degenerate behavior in empirical risk minimization. Our simulation experiments show improvements of up to 2 BLEU points by counterfactual learning from deterministic bandit feedback.Comment: Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017, Copenhagen, Denmar

    Estimating Position Bias without Intrusive Interventions

    Full text link
    Presentation bias is one of the key challenges when learning from implicit feedback in search engines, as it confounds the relevance signal. While it was recently shown how counterfactual learning-to-rank (LTR) approaches \cite{Joachims/etal/17a} can provably overcome presentation bias when observation propensities are known, it remains to show how to effectively estimate these propensities. In this paper, we propose the first method for producing consistent propensity estimates without manual relevance judgments, disruptive interventions, or restrictive relevance modeling assumptions. First, we show how to harvest a specific type of intervention data from historic feedback logs of multiple different ranking functions, and show that this data is sufficient for consistent propensity estimation in the position-based model. Second, we propose a new extremum estimator that makes effective use of this data. In an empirical evaluation, we find that the new estimator provides superior propensity estimates in two real-world systems -- Arxiv Full-text Search and Google Drive Search. Beyond these two points, we find that the method is robust to a wide range of settings in simulation studies

    Effective Evaluation using Logged Bandit Feedback from Multiple Loggers

    Full text link
    Accurately evaluating new policies (e.g. ad-placement models, ranking functions, recommendation functions) is one of the key prerequisites for improving interactive systems. While the conventional approach to evaluation relies on online A/B tests, recent work has shown that counterfactual estimators can provide an inexpensive and fast alternative, since they can be applied offline using log data that was collected from a different policy fielded in the past. In this paper, we address the question of how to estimate the performance of a new target policy when we have log data from multiple historic policies. This question is of great relevance in practice, since policies get updated frequently in most online systems. We show that naively combining data from multiple logging policies can be highly suboptimal. In particular, we find that the standard Inverse Propensity Score (IPS) estimator suffers especially when logging and target policies diverge -- to a point where throwing away data improves the variance of the estimator. We therefore propose two alternative estimators which we characterize theoretically and compare experimentally. We find that the new estimators can provide substantially improved estimation accuracy.Comment: KDD 201
    • …
    corecore