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Abstract

We provide a sound and consistent foundation for the use ofnonrandomexplo-
ration data in “contextual bandit” or “partially labeled” settings where only the
value of a chosen action is learned. The primary challenge ina variety of settings
is that the exploration policy, in which “offline” data is logged, is not explic-
itly known. Prior solutions here require either control of the actions during the
learning process, recorded random exploration, or actionschosen obliviously in a
repeated manner. The techniques reported here lift these restrictions, allowing the
learning of a policy for choosing actions given features from historical data where
no randomization occurred or was logged. We empirically verify our solution on
two reasonably sized sets of real-world data obtained from Yahoo!.

1 Introduction

Consider the advertisement display problem, where a searchengine company chooses an ad to dis-
play which is intended to interest the user. Revenue is typically provided to the search engine from
the advertiser only when the user clicks on the displayed ad.This problem is of intrinsic economic
interest, resulting in a substantial fraction of income forseveral well-known companies such as
Google, Yahoo!, and Facebook.

Before discussing the proposed approach, we formalize the problem and then explain why more
conventional approaches can fail.

The warm-start problem for contextual exploration: Let X be an arbitrary input space, and
A = {1, . . . , k} be a set of actions. An instance of thecontextual bandit problemis specified by a
distributionD over tuples(x,~r) wherex ∈ X is an input and~r ∈ [0, 1]k is a vector of rewards [6].
Events occur on a round-by-round basis where on each roundt:

1. The world draws(x,~r) ∼ D and announcesx.
2. The algorithm chooses an actiona ∈ A, possibly as a function ofx and historical informa-

tion.
3. The world announces the rewardra of actiona, but notra′ for a′ 6= a.

∗Part of this work was done while A. Strehl was at Yahoo! Research.
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It is critical to understand that this is not a standard supervised-learning problem, because the reward
of other actionsa′ 6= a is not revealed.

The standard goal in this setting is to maximize the sum of rewardsra over the rounds of interaction.
In order to do this well, it is essential to use previously recorded events to form a good policy on the
first round of interaction. Thus, this is a “warm start” problem. Formally, given a dataset of the form
S = (x, a, ra)

∗ generated by the interaction of an uncontrolled logging policy, we want to construct
a policyh maximizing (either exactly or approximately)

V h := E(x,~r)∼D[rh(x)].

Approaches that fail: There are several approaches that may appear to solve this problem, but
turn out to be inadequate:

1. Supervised learning. We could learn a regressors : X × A → [0, 1] which is trained to
predict the reward, on observed events conditioned on the action a and other information
x. From this regressor, a policy is derived according toh(x) = argmaxa∈A s(x, a). A
flaw of this approach is that theargmax may extend over a set of choices not included
in the training data, and hence may not generalize at all (or only poorly). This can be
verified by considering some extreme cases. Suppose that there are two actionsa andb
with actiona occurring106 times and actionb occuring102 times. Since actionb occurs
only a10−4 fraction of the time, a learning algorithm forced to trade off between predicting
the expected value ofra andrb overwhelmingly prefers to estimatera well at the expense of
accurate estimation forrb. And yet, in application, actionb may be chosen by the argmax.
This problem is only worse when actionb occurs zero times, as might commonly occur in
exploration situations.

2. Bandit approaches. In the standard setting these approaches suffer from the curse of di-
mensionality, because they must be applied conditioned onX . In particular, applying them
requires data linear inX×A, which is extraordinarily wasteful. In essence, this is a failure
to take advantage of generalization.

3. Contextual Bandits. Existing approaches to contextual bandits such as EXP4 [1]or Epoch
Greedy [6], require either interaction to gather data or require knowledge of the probability
the logging policy chose the actiona. In our case the probability is unknown, and it may in
fact always be1.

4. Exploration Scavenging. It is possible to recover exploration information from action vis-
itation frequency when a logging policy chooses actions independent of the inputx (but
possibly dependent on history) [5]. This doesn’t fit our setting, where the logging policy is
surely dependent on the input.

5. Propensity Scores, naively. When conducting a survey, a question about incomemight be
included, and then the proportion of responders at various income levels can be compared
to census data to estimate a probability conditioned on income that someone chooses to
partake in the survey. Given this estimated probability, results can be importance-weighted
to estimate average survey outcomes on the entire population [2]. This approach is prob-
lematic here, because the policy making decisions when logging the data may be deter-
ministic rather than probabilistic. In other words, accurately predicting the probability of
the logging policy choosing an ad implies always predicting0 or 1 which is not useful for
our purposes. Although the straightforward use of propensity scores does not work, the ap-
proach we take can be thought of as as a more clever use of a propensity score, as discussed
below. Lambert and Pregibon [4] provide a good explanation of propensity scoring in an
Internet advertising setting.

Our Approach: The approach proposed in the paper naturally breaks down into three steps.

1. For each event(x, a, ra), estimate the probabilitŷπ(a|x) that the logging policy chooses
actiona using regression. Here, the “probability” is overtime—we imagine taking a uni-
form random draw from the collection of (possibly deterministic) policies used at different
points in time.

2. For each event(x, a, ra), create a synthetic controlled contextual bandit event accord-
ing to (x, a, ra, 1/max{π̂(a|x), τ}) where τ > 0 is some parameter. The quantity,
1/max{π̂(a|x), τ}, is animportance weightthat specifies how important the current event
is for training. As will be clear, the parameterτ is critical for numeric stability.
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3. Apply an offline contextual bandit algorithm to the set of synthetic contextual bandit events.
In our second set of experimental results (Section 4.2) a variant of the argmax regressor is
used with two critical modifications: (a) We limit the scope of the argmax to those actions
with positive probability; (b) We importance weight eventsso that the training process
emphasizes good estimation for each action equally. It should be emphasized that the the-
oretical analysis in this paper applies toany algorithm for learning on contextual bandit
events—we chose this one because it is a simple modification on existing (but fundamen-
tally broken) approaches.

The above approach is most similar to the Propensity Score approach mentioned above. Relative to
it, we use a different definition of probability which is not necessarily0 or 1 when the logging policy
is completely deterministic.

Three critical questions arise when considering this approach.

1. What doeŝπ(a|x) mean, given that the logging policy may be deterministically choosing
an action (ad)a given featuresx? The essential observation is that a policy which deter-
ministically chooses actiona on day1 and then deterministically chooses actionb on day
2 can be treated as randomizing between actionsa andb with probability 0.5 when the
number of events is the same each day, and the events are IID. Thusπ̂(a|x) is an estimate
of the expected frequency with which actiona would be displayed given featuresx over
the timespan of the logged events. In section 3 we show that this approach is sound in the
sense that in expectation it provides an unbiased estimate of the value of new policy.

2. How do the inevitable errors in̂π(a|x) influence the process? It turns out they have an
effect which is dependent onτ . For very small values ofτ , the estimates of̂π(a|x) must
be extremely accurate to yield good performance while for larger values ofτ less accuracy
is required. In Section 3.1, we prove this robustness property.

3. What influence does the parameterτ have on the final result? While creating a bias in the
estimation process, it turns out that the form of this bias ismild and relatively reasonable—
actions which are displayed with low frequency conditionedonx effectively have an under-
estimated value. This is exactly as expected for the limit where actions haveno frequency.
In section 3.1 we prove this.

We close with a generalization from policy evaluation to policy selection with a sample complexity
bound in section 3.2 and then experimental results in section 4 using real data.

2 Formal Problem Setup and Assumptions

Let π1, ..., πT be T policies, where, for eacht, πt is a function mapping an input fromX to a
(possibly deterministic) distribution overA. The learning algorithm is given a dataset ofT samples,
each of the form(x, a, ra) ∈ X×A× [0, 1], where(x, r) is drawn fromD as described in Section 1,
and the actiona ∼ πt(x) is chosen according to thetth policy. We denote this random process by
(x, a, ra) ∼ (D, πt(·|x)). Similarly, interaction with theT policies results in a sequenceS of T
samples, which we denoteS ∼ (D, πi(·|x))Ti=1. The learner is not given prior knowledge of theπt.

Offline policy estimator: Given a dataset of the form

S = {(xt, at, rt,at
)}Tt=1, (1)

where∀t, xt ∈ X, at ∈ A, rt,at
∈ [0, 1], we form a predictor̂π : X × A → [0, 1] and then use it

with a thresholdτ ∈ [0, 1] to form an offline estimator for the value of a policyh.

Formally, given a new policyh : X → A and a datasetS, define the estimator:

V̂ h
π̂ (S) =

1

|S|
∑

(x,a,r)∈S

raI(h(x) = a)

max{π̂(a|x), τ} , (2)

whereI(·) denotes the indicator function. The shorthandV̂ h
π̂ will be used if there is no ambiguity.

The purpose ofτ is to upper-bound the individual terms in the sum and is similar to previous methods
like robust importance sampling [10].

The purpose ofτ is to upper-bound the individual terms in the sum and is similar to previous methods
like robust importance sampling [10].
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3 Theoretical Results

We now present our algorithm and main theoretical results. The main idea is twofold: first, we have
a policy estimation step, where we estimate the (unknown) logging policy (Subsection 3.1); second,
we have a policy optimization step, where we utilize our estimated logging policy (Subsection 3.2).
Our main result, Theorem 3.2, provides a generalization bound—addressing the issue of how both
the estimation and optimization error contribute to the total error.

The logging policyπt may be deterministic, implying that conventional approaches relying on ran-
domization in the logging policy are not applicable. We shownext that this is ok when the world
is IID and the policy varies over its actions. We effectivelysubstitute the standard approach of
randomization in the algorithm for randomization in the world.

A basic claim is that the estimator is equivalent, in expectation, to a stochastic policy defined by:
π(a|x) = Et∼UNIF(1,...,T )[πt(a|x)], (3)

whereUNIF(· · · ) denotes the uniform distribution. The stochastic policyπ chooses an action uni-
formly at random over theT policiesπt. Our first result is that the expected value of our estimator
is the same when the world chooses actions according to either π or to the sequence of policiesπt.
Although this result and its proof are straightforward, it forms the basis for the rest of the results in
our paper. Note that the policiesπt may be arbitrary but we have assumed that they do not depend
on the data used for evaluation. This assumption is only necessary for the proofs and can often be
relaxed in practice, as we show in Section 4.1.
Theorem 3.1. For any contextual bandit problemD with identical draws overT rounds, for any
sequence of possibly stochastic policiesπt(a|x) with π derived as above, and for any predictorπ̂,

ES∼(D,πi(·|x))Ti=1

V̂ h
π̂ (S) = E(x,~r)∼D,a∼π(·|x)

raI(h(x) = a)

max{π̂(a|x), τ} (4)

This theorem relates the expected value of our estimator when T policies are used to the much
simpler and more standard setting where a single fixed stochastic policy is used.

3.1 Policy Estimation

In this section we show that for a suitable choice ofτ andπ̂ our estimator is sufficiently accurate
for evaluating new policiesh. We aggressively use the simplification of the previous section, which
shows that we can think of the data as generated by a fixed stochastic policyπ, i.e.πt = π for all t.

For a given estimatêπ of π define the “regret” to be a functionreg :X → [0, 1] by

reg(x) = max
a∈A

[

(π(a|x) − π̂(a|x))2
]

. (5)

We do not useℓ1 or ℓ∞ loss above because they are harder to minimize thanℓ2 loss. Our next result
is that the new estimator is consistent. In the following theorem statement,I(·) denotes the indicator
function,π(a|x) the probability that the logging policy chooses actiona on inputx, andV̂ h

π̂ our
estimator as defined by Equation 2 based on parameterτ .
Lemma 3.1. Let π̂ be any function fromX to distributions over actionsA. Leth : X → A be any
deterministic policy. LetV h(x) = Er∼D(·|x)[rh(x)] denote the expected value of executing policyh
on inputx. We have that

Ex

[

I(π(h(x)|x) ≥ τ ) ·

(

V
h(x)−

√

reg(x)

τ

)]

≤ E[V̂ h

π̂ ] ≤ V
h +Ex

[

I(π(h(x)|x) ≥ τ ) ·

√

reg(x)

τ

]

.

In the above, the expectationE[V̂ h
π̂ ] is taken over all sequences ofT tuples(x, a, r) where(x, r) ∼

D anda ∼ π(·|x).1

This lemma bounds the bias in our estimate ofV h(x). There are two sources of bias—one from the
error ofπ̂(a|x) in estimatingπ(a|x), and the other from thresholdτ . For the first source, it’s crucial
that we analyze the result in terms of the squared loss ratherthan (say)ℓ∞ loss, as reasonable sample
complexity bounds on the regret of squared loss estimates are achievable.2

1Note that varyingT does not change the expectation of our estimator, soT has no effect in the theorem.
2Extending our results to log loss would be interesting future work, but is made difficult by the fact that log

loss is unbounded.
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Lemma 3.1 shows that the expected value of our estimateV̂ h
π of a policyh is an approximation to a

lower bound of the true value of the policyh where the approximation is due to errors in the estimate
π̂ and the lower bound is due to the thresholdτ . Whenπ̂ = π, then the statement of Lemma 3.1
simplifies to

Ex

[

I(π(h(x)|x) ≥ τ) · V h(x)
]

≤ E[V̂ h
π̂ ] ≤ V h.

Thus, with a perfect predictor ofπ, the expected value of the estimatorV̂ h
π̂ is a guaranteed lower

bound on the true value of policyh. However, as the left-hand-side of this statement suggests, it may
be a very loose bound, especially if the action chosen byh often has a small probability of being
chosen byπ.

The dependence on1/τ in Lemma 3.1 is somewhat unsettling, but unavoidable. Consider an
instance of the bandit problem with a single inputx and two actionsa1, a2. Suppose that
π(a1|x) = τ + ǫ for some positiveǫ and h(x) = a1 is the policy we are evaluating. Sup-
pose further that the rewards are always1 and thatπ̂(a1|x) = τ . Then, the estimator sat-
isfies E[V̂ h

π̂ ] = π(a1|x)/π̂(a1|x) = (τ + ǫ)/τ . Thus, the expected error in the estimate is
E[V̂ h

π̂ ]− V h = |(τ + ǫ)/τ − 1| = ǫ/τ , while the regret of̂π is (π(a1|x)− π̂(a1|x))2 = ǫ2.

3.2 Policy Optimization

The previous section proves that we can effectively evaluate a policyh by observing a stochastic
policyπ, as long as the actions chosen byh have adequate support underπ, specificallyπ(h(x)|x) ≥
τ for all inputsx. However, we are often interested in choosing the best policy h from a set of
policiesH after observing logged data. Furthermore, as described in Section 2, the logged data are
generated fromT fixed, possibly deterministic, policiesπ1, . . . , πT as described in section 2 rather
than a single stochastic policy. As in Section 3 we define the stochastic policyπ by Equation 3,

π(a|x) = Et∼UNIF(1,...,T )[πt(a|x)]

The results of Section 3.1 apply to the policy optimization problem. However, note that the data are
now assumed to be drawn from the execution of a sequence ofT policiesπ1, . . . , πT , rather than by
T draws fromπ.

Next, we show that it is possible to compete well with the besthypothesis inH that has adequate
support underπ (even though the data are not generated fromπ).

Theorem 3.2. Let π̂ be any function fromX to distributions over actionsA. LetH be any set of de-
terministic policies. DefinẽH = {h ∈ H | π(h(x)|x) > τ, ∀ x ∈ X} and h̃ = argmaxh∈H̃{V h}.

Let ĥ = argmaxh∈H{V̂ h
π̂ } be the hypothesis that maximizes the empirical value estimator defined

in Equation 2. Then, with probability at least1− δ,

V ĥ ≥ V h̃ − 2

τ

(

√

Ex[reg(x)] +

√

ln(2|H |/δ)
2T

)

, (6)

wherereg(x) is defined, with respect toπ, in Equation 5.

The proof of Theorem 3.2 relies on the lower-bound property of our estimator (the left-hand side
of Inequality stated in Lemma 3.1). In other words, ifH contains a very good policy that has
little support underπ, we will not be able to detect that by our estimator. On the other hand, our
estimation is safe in the sense that we will never drastically overestimate the value of any policy inH.
This “underestimate, but don’t overestimate” property is critical to the application of optimization
techniques, as it implies we can use an unrestrained learning algorithm to derive a warm start policy.

4 Empirical Evaluation

We evaluated our method on two real-world datasets obtainedfrom Yahoo!. The first dataset con-
sists of uniformly random exploration data, from which an unbiased estimate of any policy can be
obtained. This dataset is thus used to verify accuracy of ouroffline evaluator (2). The second dataset
then demonstrates how policy optimization can be done from nonrandom offline data.
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4.1 Experiment I

The first experiment involves news article recommendation in the “Today Module”, on the Yahoo!
front page. For every user visit, this module displays a high-quality news article out of a small
candidate pool, which is hand-picked by human editors. The pool contains about 20 articles at
any given time. We seek to maximize the click probability (aka click-through rate, or CTR) of the
highlighted article. This problem is modeled as a contextual bandit problem, where the context
consists of both user and article information, the arms correspond to articles, and the reward of a
displayed article is1 if there is a click and0 otherwise. Therefore, the value of a policy is exactly
its overall CTR. To protect business-sensitive information, we only report normalized CTR (nCTR)
which is defined as the ratio of the true CTR and the CTR of a random policy.

Our dataset, denotedD0, was collected from real traffic on the Yahoo! front page during a two-
week period in June 2009. It containsT = 64.7M events in the form of triples(x, a, r), where
the contextx contains user/article features, arma was chosenuniformly at randomfrom a dynamic
candidate poolA, andr is a binary reward signal indicating whether the user clicked ona. Since
actions are chosen randomly, we haveπ̂(a|x) = π(a|x) ≡ 1/|A| andreg(x) ≡ 0. Consequently,
Lemma 3.1 impliesE[V̂ h

π̂ ] = V h providedτ < 1/|A|. Furthermore, a straightforward application
of Hoeffding’s inequality guarantees thatV̂ h

π̂ concentrates toV h at the rate ofO(1/
√
T ) for any

policyh, which is also verified empirically [9]. Given the size of ourdataset, therefore, we used this
dataset to calculatêV0 = V̂ h

π̂ usingπ̂(a|x) = 1/|A| in (2). The result̂V0 was then treated as “ground
truth”, with which we can evaluate how accurate the offline evaluator (2) is when non-random log
data are used instead.

To obtain non-random log data, we ran the LinUCB algorithm using the offline bandit simulation
procedure, both from [8], on our random log dataD0 and recorded events(x, a, r) for which Lin-
UCB chose arma for contextx. Note thatπ is a deterministic learning algorithm, and may choose
different arms for the same context at different timesteps.We call this subset of recorded eventsDπ.
It is known that the set of recorded events has the same distribution as if we ran LinUCB on real
user visits to Yahoo! front page. We usedDπ as non-random log data and do evaluation.

To define the policyh for evaluation, we usedD0 to estimate each article’s overall CTR across all
users, and thenh was defined as selecting the article with highest estimated CTR.

We then evaluatedh onDπ using the offline evaluator (2). Since the setA of articles changes over
time (with news articles being added and old articles retiring),π(a|x) is very small due to the large
number of articles over the two-week period, resulting in large variance. To resolve this problem,
we split the datasetDπ into subsets so that in each subset the candidate pool remains constant,3 and
then estimateπ(a|x) for each subset separately using ridge regression on featuresx. We note that
more advanced conditional probability estimation techniques can be used.

Figure 1 plotsV̂ h
π̂ with varyingτ against the ground trutĥV0. As expected, asτ becomes larger,

our estimate can become more (downward) biased. For a large range ofτ values, our estimates
are reasonably accurate, suggesting the usefulness of our proposed method. In contrast, a naive
approach, which assumesπ(a|x) = 1/|A|, gives a very poor estimate of2.4.

For extremely small values ofτ , however, there appears to be a consistent trend of over-estimating
the policy value. This is due to the fact that negative moments of a positive random variable are
often larger than the corresponding moments of its expectation [7].

Note that the logging policy we used,π, violates one of the assumptions used to prove Lemma 3.1,
namely that the exploration policy at timestept not be dependent on an earlier event. Our offline
evaluator is accurate in this setting, which suggests that the assumption may be relaxable in practice.

4.2 Experiment II

In the second experiment, we investigate our approach to thewarm-start problem. The dataset was
provided by Yahoo!, covering a period of one month in 2008. The data are comprised of logs of
events(x, a, y), where each event represents a visit by a user to a particularweb pagex, from a set
of web pagesX . From a large set of advertisementsA, the commercial system chooses a single ad

3We could do so because we knowA for every event inD0.
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Figure 1: Accuracy of offline evaluator with
varyingτ values.

Method τ Estimate Interval
Learned 0.01 0.0193 [0.0187,0.0206]
Random 0.01 0.0154 [0.0149,0.0166]
Learned 0.05 0.0132 [0.0129,0.0137]
Random 0.05 0.0111 [0.0109,0.0116]
Naive 0.05 0.0 [0,0.0071]

Figure 2: Results of various algorithms on the ad
display dataset. Note these numbers were com-
puted using a not-necessarily-uniform sample of
data.

a for the topmost, or most prominent position. It also choosesadditional ads to display, but these
were ignored in our test. The outputy is an indicator of whether the user clicked on the ad or not.

The total number of ads in the data set is approximately880, 000. The training data consist of35
million events. The test data contain19 million events occurring after the events in the training data.
The total number of distinct web pages is approximately3.4 million.

We trained a policyh to choose an ad, based on the current page, to maximize the probability of
click. For the purposes of learning, each ad and page was represented internally as a sparse high-
dimensional feature vector. The features correspond to thewords that appear in the page or ad,
weighted by the frequency with which they appear. Each ad contains, on average,30 ad features and
each page, approximately50 page features. The particular form off was linear over features of its
input(x, a)4

The particular policy that was optimized, had an argmax form: h(x) = argmaxa∈C(X){f(x, a)},
with a crucial distinction from previous approaches in howf(x, a) was trained. Heref : X ×A →
[0, 1] is a regression function that is trained to estimate probability of click, and C(X) = {a ∈
A | π̂(a|x) > 0} is a set of feasible ads.

The training samples were of the form(x, a, y), wherey = 1 if the ada was clicked after being
shown on pagex or y = 0 otherwise. The regressorf was chosen to approximately minimize

theweightedsquared loss: (y−f(x,a))2

max{π̂(at|xt),τ}
. Stochastic gradient descent was used to minimize the

squared loss on the training data.

During the evaluation, we computed the estimator on the testdata(xt, at, yt):

V̂ h
π̂ =

1

T

T
∑

t=1

ytI(h(xt) = at)

max{π̂(at|xt), τ}
. (7)

As mentioned in the introduction, this estimator is biased due to the use of the parameterτ > 0. As
shown in the analysis of Section 3, this bias typically underestimates the true value of the policyh.

We experimented with different thresholdsτ and parameters of our learning algorithm.5 Results are
summarized in the Table 2.

The Interval column is computed using the relative entropy form of the Chernoff bound with
δ = 0.05 which holds under the assumption that variables, in our casethe samples used in the
computation of the estimator (Equation 7), are IID. Note that this computation is slightly compli-
cated because the range of the variables is[0, 1/τ ] rather than[0, 1] as is typical. This is handled by
rescaling byτ , applying the bound, and then rescaling the results by1/τ .

4Technically the feature vector that the regressor uses is the Cartesian product of the page and ad vectors.
5For stochastic gradient descent, we varied the learning rate over5 fixed numbers (0.2, 0.1, 0.05, 0.02, 0.01)

using 1 pass over the data. We report on the test results for the value with the best training error.
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The “Random” policy is the policy that chooses randomly fromthe set of feasible ads:
Random(x) = a ∼ UNIF(C(X)), whereUNIF(·) denotes the uniform distribution.

The “Naive” policy corresponds to the theoretically flawed supervised learning approach detailed in
the introduction. The evaluation of this policy is quite expensive, requiring one evaluation per ad
per example, so the size of the test set is reduced to8373 examples with a click, which reduces the
significance of the results. We bias the results towards the naive policy by choosing the chronologi-
cally first events in the test set (i.e. the events most similar to those in the training set). Nevertheless,
the naive policy receives0 reward, which is significantly less than all other approaches. A possible
fear with the evaluation here is that the naive policy is always finding good ads that simply weren’t
explored. A quick check shows that this is not correct–the naive argmax simply makes implausible
choices. Note that we report only evaluation againstτ = 0.05, as the evaluation againstτ = 0.01 is
not significant, although the reward obviously remains0.

The “Learned” policies do depend onτ . As suggested by Theorem 3.2, asτ is decreased, the
effective set of hypotheses we compete with is increased, thus allowing for better performance of
the learned policy. Indeed, the estimates for both the learned policy and the random policy improve
when we decreaseτ from 0.05 to 0.01.

The empirical click-through rate on the test set was0.0213, which is slightly larger than the estimate
for the best learned policy. However, this number is not directly comparable since the estimator
provides a lower bound on the true value of the policy due to the bias introduced by a nonzeroτ and
because any deployed policy chooses from only the set of ads which are available to display rather
than the set of all ads which might have been displayable at other points in time.

The empirical results are generally consistent with the theoretical approach outlined here—they pro-
vide a consistently pessimal estimate of policy value whichnevertheless has sufficient dynamic range
to distinguish learned policies from random policies, learned policies over larger spaces (smaller
τ ) from smaller spaces (largerτ ), and the theoretically unsound naive approach from sounder ap-
proaches which choose amongst the the explored space of ads.It would be interesting future work
to compare our approach to a full-fledged production online advertising system.

5 Conclusion

We stated, justified, and evaluated theoretically and empirically the first method for solving the warm
start problem for exploration from logged data with controlled bias and estimation. This problem
is of obvious interest to applications for internet companies that recommend content (such as ads,
search results, news stories, etc...) to users.

However, we believe this also may be of interest for other application domains within machine
learning. For example, in reinforcement learning, the standard approach to offline policy evaluation
is based on importance weighted samples [3, 11]. The basic results stated here could be applied to
RL settings, eliminating the need to know the probability ofa chosen action explicitly, allowing an
RL agent to learn from external observations of other agents.
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