3,136 research outputs found

    Zero-Shot Learning -- A Comprehensive Evaluation of the Good, the Bad and the Ugly

    Full text link
    Due to the importance of zero-shot learning, i.e. classifying images where there is a lack of labeled training data, the number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark, we first define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets used for this task. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g. pre-training on zero-shot test classes. Moreover, we propose a new zero-shot learning dataset, the Animals with Attributes 2 (AWA2) dataset which we make publicly available both in terms of image features and the images themselves. Second, we compare and analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic generalized zero-shot setting. Finally, we discuss in detail the limitations of the current status of the area which can be taken as a basis for advancing it.Comment: Accepted by TPAMI in July, 2018. We introduce Proposed Split Version 2.0 (Please download it from our project webpage). arXiv admin note: substantial text overlap with arXiv:1703.0439

    Class Proportion Estimation with Application to Multiclass Anomaly Rejection

    Full text link
    This work addresses two classification problems that fall under the heading of domain adaptation, wherein the distributions of training and testing examples differ. The first problem studied is that of class proportion estimation, which is the problem of estimating the class proportions in an unlabeled testing data set given labeled examples of each class. Compared to previous work on this problem, our approach has the novel feature that it does not require labeled training data from one of the classes. This property allows us to address the second domain adaptation problem, namely, multiclass anomaly rejection. Here, the goal is to design a classifier that has the option of assigning a "reject" label, indicating that the instance did not arise from a class present in the training data. We establish consistent learning strategies for both of these domain adaptation problems, which to our knowledge are the first of their kind. We also implement the class proportion estimation technique and demonstrate its performance on several benchmark data sets.Comment: Accepted to AISTATS 2014. 15 pages. 2 figure

    Hard-aware Instance Adaptive Self-training for Unsupervised Cross-domain Semantic Segmentation

    Full text link
    The divergence between labeled training data and unlabeled testing data is a significant challenge for recent deep learning models. Unsupervised domain adaptation (UDA) attempts to solve such problem. Recent works show that self-training is a powerful approach to UDA. However, existing methods have difficulty in balancing the scalability and performance. In this paper, we propose a hard-aware instance adaptive self-training framework for UDA on the task of semantic segmentation. To effectively improve the quality and diversity of pseudo-labels, we develop a novel pseudo-label generation strategy with an instance adaptive selector. We further enrich the hard class pseudo-labels with inter-image information through a skillfully designed hard-aware pseudo-label augmentation. Besides, we propose the region-adaptive regularization to smooth the pseudo-label region and sharpen the non-pseudo-label region. For the non-pseudo-label region, consistency constraint is also constructed to introduce stronger supervision signals during model optimization. Our method is so concise and efficient that it is easy to be generalized to other UDA methods. Experiments on GTA5 to Cityscapes, SYNTHIA to Cityscapes, and Cityscapes to Oxford RobotCar demonstrate the superior performance of our approach compared with the state-of-the-art methods.Comment: arXiv admin note: text overlap with arXiv:2008.1219
    • …
    corecore