1,285 research outputs found

    Learning for Multi-robot Cooperation in Partially Observable Stochastic Environments with Macro-actions

    Get PDF
    This paper presents a data-driven approach for multi-robot coordination in partially-observable domains based on Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) and macro-actions (MAs). Dec-POMDPs provide a general framework for cooperative sequential decision making under uncertainty and MAs allow temporally extended and asynchronous action execution. To date, most methods assume the underlying Dec-POMDP model is known a priori or a full simulator is available during planning time. Previous methods which aim to address these issues suffer from local optimality and sensitivity to initial conditions. Additionally, few hardware demonstrations involving a large team of heterogeneous robots and with long planning horizons exist. This work addresses these gaps by proposing an iterative sampling based Expectation-Maximization algorithm (iSEM) to learn polices using only trajectory data containing observations, MAs, and rewards. Our experiments show the algorithm is able to achieve better solution quality than the state-of-the-art learning-based methods. We implement two variants of multi-robot Search and Rescue (SAR) domains (with and without obstacles) on hardware to demonstrate the learned policies can effectively control a team of distributed robots to cooperate in a partially observable stochastic environment.Comment: Accepted to the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017

    A Projective Simulation Scheme for Partially-Observable Multi-Agent Systems

    Full text link
    We introduce a kind of partial observability to the projective simulation (PS) learning method. It is done by adding a belief projection operator and an observability parameter to the original framework of the efficiency of the PS model. I provide theoretical formulations, network representations, and situated scenarios derived from the invasion toy problem as a starting point for some multi-agent PS models.Comment: 28 pages, 21 figure

    Influence-Optimistic Local Values for Multiagent Planning --- Extended Version

    Get PDF
    Recent years have seen the development of methods for multiagent planning under uncertainty that scale to tens or even hundreds of agents. However, most of these methods either make restrictive assumptions on the problem domain, or provide approximate solutions without any guarantees on quality. Methods in the former category typically build on heuristic search using upper bounds on the value function. Unfortunately, no techniques exist to compute such upper bounds for problems with non-factored value functions. To allow for meaningful benchmarking through measurable quality guarantees on a very general class of problems, this paper introduces a family of influence-optimistic upper bounds for factored decentralized partially observable Markov decision processes (Dec-POMDPs) that do not have factored value functions. Intuitively, we derive bounds on very large multiagent planning problems by subdividing them in sub-problems, and at each of these sub-problems making optimistic assumptions with respect to the influence that will be exerted by the rest of the system. We numerically compare the different upper bounds and demonstrate how we can achieve a non-trivial guarantee that a heuristic solution for problems with hundreds of agents is close to optimal. Furthermore, we provide evidence that the upper bounds may improve the effectiveness of heuristic influence search, and discuss further potential applications to multiagent planning.Comment: Long version of IJCAI 2015 paper (and extended abstract at AAMAS 2015

    The MADP Toolbox: An Open-Source Library for Planning and Learning in (Multi-)Agent Systems

    Get PDF
    This article describes the MultiAgent Decision Process (MADP) toolbox, a software library to support planning and learning for intelligent agents and multiagent systems in un- certain environments. Some of its key features are that it sup- ports partially observable environments and stochastic tran- sition models; has unified support for single- and multiagent systems; provides a large number of models for decision- theoretic decision making, including one-shot decision mak- ing (e.g., Bayesian games) and sequential decision mak- ing under various assumptions of observability and coopera- tion, such as Dec-POMDPs and POSGs; provides tools and parsers to quickly prototype new problems; provides an ex- tensive range of planning and learning algorithms for single- and multiagent systems; and is written in C++ and designed to be extensible via the object-oriented paradigm
    • …
    corecore