3 research outputs found

    Privacy-Preserving Biometric Authentication

    Full text link
    Biometric-based authentication provides a highly accurate means of authentication without requiring the user to memorize or possess anything. However, there are three disadvantages to the use of biometrics in authentication; any compromise is permanent as it is impossible to revoke biometrics; there are significant privacy concerns with the loss of biometric data; and humans possess only a limited number of biometrics, which limits how many services can use or reuse the same form of authentication. As such, enhancing biometric template security is of significant research interest. One of the methodologies is called cancellable biometric template which applies an irreversible transformation on the features of the biometric sample and performs the matching in the transformed domain. Yet, this is itself susceptible to specific classes of attacks, including hill-climb, pre-image, and attacks via records multiplicity. This work has several outcomes and contributions to the knowledge of privacy-preserving biometric authentication. The first of these is a taxonomy structuring the current state-of-the-art and provisions for future research. The next of these is a multi-filter framework for developing a robust and secure cancellable biometric template, designed specifically for fingerprint biometrics. This framework is comprised of two modules, each of which is a separate cancellable fingerprint template that has its own matching and measures. The matching for this is based on multiple thresholds. Importantly, these methods show strong resistance to the above-mentioned attacks. Another of these outcomes is a method that achieves a stable performance and can be used to be embedded into a Zero-Knowledge-Proof protocol. In this novel method, a new strategy was proposed to improve the recognition error rates which is privacy-preserving in the untrusted environment. The results show promising performance when evaluated on current datasets

    Learning Discriminability-Preserving Histogram Representation from Unordered Features for Multibiometric Feature-Fused-Template Protection

    Full text link
    Multi-biometric feature-level fusion exploits feature information from more than one biometric source to improve recognition performance and template security. When ordered and unordered feature sets representing different biometric sources are involved, feature fusion becomes problematic. One way to mitigate this incompatibility problem is to transform the unordered extracted feature sets to ordered feature representation without sacrificing the discrimination power of the original features so that a feature fusion on ordered features can subsequently be applied. Existing unordered-to-ordered feature transformation methods are designed for three-dimensional minutiae point sets and are mostly not adaptable to high-dimensional feature input. This paper proposes a feature transformation scheme to learn a histogram representation from an unordered feature set. Our algorithm estimates the component-wise correspondences among the sample feature sets of each user and then learns a set of bins per user based on the distribution of the mutually-corresponding feature instances. Given the learnt bins, the histogram representation of a sample can be generated by concatenating the normalized frequency of unordered features falling into histogram bins. Experimental results on seven unimodal and three bimodal biometric databases show that our feature transformation scheme is able to preserve the discrimination power of the original features more promisingly than state-of-the-art transformation schemes

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study
    corecore