275 research outputs found

    Domain Generalization -- A Causal Perspective

    Full text link
    Machine learning models rely on various assumptions to attain high accuracy. One of the preliminary assumptions of these models is the independent and identical distribution, which suggests that the train and test data are sampled from the same distribution. However, this assumption seldom holds in the real world due to distribution shifts. As a result models that rely on this assumption exhibit poor generalization capabilities. Over the recent years, dedicated efforts have been made to improve the generalization capabilities of these models collectively known as -- \textit{domain generalization methods}. The primary idea behind these methods is to identify stable features or mechanisms that remain invariant across the different distributions. Many generalization approaches employ causal theories to describe invariance since causality and invariance are inextricably intertwined. However, current surveys deal with the causality-aware domain generalization methods on a very high-level. Furthermore, we argue that it is possible to categorize the methods based on how causality is leveraged in that method and in which part of the model pipeline is it used. To this end, we categorize the causal domain generalization methods into three categories, namely, (i) Invariance via Causal Data Augmentation methods which are applied during the data pre-processing stage, (ii) Invariance via Causal representation learning methods that are utilized during the representation learning stage, and (iii) Invariance via Transferring Causal mechanisms methods that are applied during the classification stage of the pipeline. Furthermore, this survey includes in-depth insights into benchmark datasets and code repositories for domain generalization methods. We conclude the survey with insights and discussions on future directions

    Fair and Private Data Preprocessing through Microaggregation

    Get PDF
    Privacy protection for personal data and fairness in automated decisions are fundamental requirements for responsible Machine Learning. Both may be enforced through data preprocessing and share a common target: data should remain useful for a task, while becoming uninformative of the sensitive information. The intrinsic connection between privacy and fairness implies that modifications performed to guarantee one of these goals, may have an effect on the other, e.g., hiding a sensitive attribute from a classification algorithm might prevent a biased decision rule having such attribute as a criterion. This work resides at the intersection of algorithmic fairness and privacy. We show how the two goals are compatible, and may be simultaneously achieved, with a small loss in predictive performance. Our results are competitive with both state-of-the-art fairness correcting algorithms and hybrid privacy-fairness methods. Experiments were performed on three widely used benchmark datasets: Adult Income, COMPAS, and German Credit

    Fair and Private Data Preprocessing through Microaggregation

    Get PDF
    Copyright \ua9 2023 held by the owner/author(s).Privacy protection for personal data and fairness in automated decisions are fundamental requirements for responsible Machine Learning. Both may be enforced through data preprocessing and share a common target: data should remain useful for a task, while becoming uninformative of the sensitive information. The intrinsic connection between privacy and fairness implies that modifications performed to guarantee one of these goals, may have an effect on the other, e.g., hiding a sensitive attribute from a classification algorithm might prevent a biased decision rule having such attribute as a criterion. This work resides at the intersection of algorithmic fairness and privacy. We show how the two goals are compatible, and may be simultaneously achieved, with a small loss in predictive performance. Our results are competitive with both state-of-the-art fairness correcting algorithms and hybrid privacy-fairness methods. Experiments were performed on three widely used benchmark datasets: Adult Income, COMPAS, and German Credit

    Learning from small and imbalanced dataset of images using generative adversarial neural networks.

    Get PDF
    The performance of deep learning models is unmatched by any other approach in supervised computer vision tasks such as image classification. However, training these models requires a lot of labeled data, which are not always available. Labelling a massive dataset is largely a manual and very demanding process. Thus, this problem has led to the development of techniques that bypass the need for labelling at scale. Despite this, existing techniques such as transfer learning, data augmentation and semi-supervised learning have not lived up to expectations. Some of these techniques do not account for other classification challenges, such as a class-imbalance problem. Thus, these techniques mostly underperform when compared with fully supervised approaches. In this thesis, we propose new methods to train a deep model on image classification with a limited number of labeled examples. This was achieved by extending state-of-the-art generative adversarial networks with multiple fake classes and network switchers. These new features enabled us to train a classifier using large unlabeled data, while generating class specific samples. The proposed model is label agnostic and is suitable for different classification scenarios, ranging from weakly supervised to fully supervised settings. This was used to address classification challenges with limited labeled data and a class-imbalance problem. Extensive experiments were carried out on different benchmark datasets. Firstly, the proposed approach was used to train a classification model and our findings indicated that the proposed approach achieved better classification accuracies, especially when the number of labeled samples is small. Secondly, the proposed approach was able to generate high-quality samples from class-imbalance datasets. The samples' quality is evident in improved classification performances when generated samples were used in neutralising class-imbalance. The results are thoroughly analyzed and, overall, our method showed superior performances over popular resampling technique and the AC-GAN model. Finally, we successfully applied the proposed approach as a new augmentation technique to two challenging real-world problems: face with attributes and legacy engineering drawings. The results obtained demonstrate that the proposed approach is effective even in extreme cases

    Addressing Dataset Bias in Deep Neural Networks

    Get PDF
    Deep Learning has achieved tremendous success in recent years in several areas such as image classification, text translation, autonomous agents, to name a few. Deep Neural Networks are able to learn non-linear features in a data-driven fashion from complex, large scale datasets to solve tasks. However, some fundamental issues remain to be fixed: the kind of data that is provided to the neural network directly influences its capability to generalize. This is especially true when training and test data come from different distributions (the so called domain gap or domain shift problem): in this case, the neural network may learn a data representation that is representative for the training data but not for the test, thus performing poorly when deployed in actual scenarios. The domain gap problem is addressed by the so-called Domain Adaptation, for which a large literature was recently developed. In this thesis, we first present a novel method to perform Unsupervised Domain Adaptation. Starting from the typical scenario in which we dispose of labeled source distributions and an unlabeled target distribution, we pursue a pseudo-labeling approach to assign a label to the target data, and then, in an iterative way, we refine them using Generative Adversarial Networks. Subsequently, we faced the debiasing problem. Simply speaking, bias occurs when there are factors in the data which are spuriously correlated with the task label, e.g., the background, which might be a strong clue to guess what class is depicted in an image. When this happens, neural networks may erroneously learn such spurious correlations as predictive factors, and may therefore fail when deployed on different scenarios. Learning a debiased model can be done using supervision regarding the type of bias affecting the data, or can be done without any annotation about what are the spurious correlations. We tackled the problem of supervised debiasing -- where a ground truth annotation for the bias is given -- under the lens of information theory. We designed a neural network architecture that learns to solve the task while achieving at the same time, statistical independence of the data embedding with respect to the bias label. We finally addressed the unsupervised debiasing problem, in which there is no availability of bias annotation. we address this challenging problem by a two-stage approach: we first split coarsely the training dataset into two subsets, samples that exhibit spurious correlations and those that do not. Second, we learn a feature representation that can accommodate both subsets and an augmented version of them
    • …
    corecore