8 research outputs found

    Cost Functions for Robot Motion Style

    Full text link
    We focus on autonomously generating robot motion for day to day physical tasks that is expressive of a certain style or emotion. Because we seek generalization across task instances and task types, we propose to capture style via cost functions that the robot can use to augment its nominal task cost and task constraints in a trajectory optimization process. We compare two approaches to representing such cost functions: a weighted linear combination of hand-designed features, and a neural network parameterization operating on raw trajectory input. For each cost type, we learn weights for each style from user feedback. We contrast these approaches to a nominal motion across different tasks and for different styles in a user study, and find that they both perform on par with each other, and significantly outperform the baseline. Each approach has its advantages: featurized costs require learning fewer parameters and can perform better on some styles, but neural network representations do not require expert knowledge to design features and could even learn more complex, nuanced costs than an expert can easily design

    Using Inverse Reinforcement Learning with Real Trajectories to Get More Trustworthy Pedestrian Simulation

    Get PDF
    Reinforcement learning is one of the most promising machine learning techniques to get intelligent behaviors for embodied agents in simulations. The output of the classic Temporal Difference family of Reinforcement Learning algorithms adopts the form of a value function expressed as a numeric table or a function approximator. The learned behavior is then derived using a greedy policy with respect to this value function. Nevertheless, sometimes the learned policy does not meet expectations, and the task of authoring is difficult and unsafe because the modification of one value or parameter in the learned value function has unpredictable consequences in the space of the policies it represents. This invalidates direct manipulation of the learned value function as a method to modify the derived behaviors. In this paper, we propose the use of Inverse Reinforcement Learning to incorporate real behavior traces in the learning process to shape the learned behaviors, thus increasing their trustworthiness (in terms of conformance to reality). To do so, we adapt the Inverse Reinforcement Learning framework to the navigation problem domain. Specifically, we use Soft Q-learning, an algorithm based on the maximum causal entropy principle, with MARL-Ped (a Reinforcement Learning-based pedestrian simulator) to include information from trajectories of real pedestrians in the process of learning how to navigate inside a virtual 3D space that represents the real environment. A comparison with the behaviors learned using a Reinforcement Learning classic algorithm (Sarsa(λ)) shows that the Inverse Reinforcement Learning behaviors adjust significantly better to the real trajectories

    Emotion Transfer for 3D Hand and Full Body Motion using StarGAN

    Get PDF
    In this paper, we propose a new data-driven framework for 3D hand and full-body motion emotion transfer. Specifically, we formulate the motion synthesis task as an image-to-image translation problem. By presenting a motion sequence as an image representation, the emotion can be transferred by our framework using StarGAN. To evaluate our proposed method's effectiveness, we first conducted a user study to validate the perceived emotion from the captured and synthesized hand motions. We further evaluate the synthesized hand and full body motions qualitatively and quantitatively. Experimental results show that our synthesized motions are comparable to the captured motions and those created by an existing method in terms of naturalness and visual quality

    Asymptotically Optimal Motion Planning for Learned Tasks Using Time-Dependent Cost Maps

    Get PDF
    In unstructured environments in people’s homes and workspaces, robots executing a task may need to avoid obstacles while satisfying task motion constraints, e.g., keeping a plate of food level to avoid spills or properly orienting a finger to push a button. We introduce a sampling-based method for computing motion plans that are collision-free and minimize a cost metric that encodes task motion constraints. Our time-dependent cost metric, learned from a set of demonstrations, encodes features of a task’s motion that are consistent across the demonstrations and, hence, are likely required to successfully execute the task. Our sampling-based motion planner uses the learned cost metric to compute plans that simultaneously avoid obstacles and satisfy task constraints. The motion planner is asymptotically optimal and minimizes the Mahalanobis distance between the planned trajectory and the distribution of demonstrations in a feature space parameterized by the locations of task-relevant objects. The motion planner also leverages the distribution of the demonstrations to significantly reduce plan computation time. We demonstrate the method’s effectiveness and speed using a small humanoid robot performing tasks requiring both obstacle avoidance and satisfaction of learned task constraints

    Generalizing locomotion style to new animals with inverse optimal regression

    Full text link

    Robots that Learn and Plan — Unifying Robot Learning and Motion Planning for Generalized Task Execution

    Get PDF
    Robots have the potential to assist people with a variety of everyday tasks, but to achieve that potential robots require software capable of planning and executing motions in cluttered environments. To address this, over the past few decades, roboticists have developed numerous methods for planning motions to avoid obstacles with increasingly stronger guarantees, from probabilistic completeness to asymptotic optimality. Some of these methods have even considered the types of constraints that must be satisfied to perform useful tasks, but these constraints must generally be manually specified. In recent years, there has been a resurgence of methods for automatic learning of tasks from human-provided demonstrations. Unfortunately, these two fields, task learning and motion planning, have evolved largely separate from one another, and the learned models are often not usable by motion planners. In this thesis, we aim to bridge the gap between robot task learning and motion planning by employing a learned task model that can subsequently be leveraged by an asymptotically-optimal motion planner to autonomously execute the task. First, we show that application of a motion planner enables task performance while avoiding novel obstacles and extend this to dynamic environments by replanning at reactive rates. Second, we generalize the method to accommodate time-invariant model parameters, allowing more information to be gleaned from the demonstrations. Third, we describe a more principled approach to temporal registration for such learning methods that mirrors the ultimate integration with a motion planner and often reduces the number of demonstrations required. Finally, we extend this framework to the domain of mobile manipulation. We empirically evaluate each of these contributions on multiple household tasks using the Aldebaran Nao, Rethink Robotics Baxter, and Fetch mobile manipulator robots to show that these approaches improve task execution success rates and reduce the amount of human-provided information required.Doctor of Philosoph

    Learning Behavior Styles with Inverse Reinforcement Learning

    No full text
    We present a method for inferring the behavior styles of character controllers from a small set of examples. We show that a rich set of behavior variations can be captured by determining the appropriate reward function in the reinforcement learning framework, and show that the discovered reward function can be applied to different environments and scenarios. We also introduce a new algorithm to recover the unknown reward function that improves over the original apprenticeship learning algorithm. We show that the reward function representing a behavior style can be applied to a variety of different tasks, while still preserving the key features of the style present in the given examples. We describe an adaptive process where an author can, with just a few additional examples, refine the behavior so that it has better generalization properties
    corecore