5,579 research outputs found

    Neural Task Programming: Learning to Generalize Across Hierarchical Tasks

    Full text link
    In this work, we propose a novel robot learning framework called Neural Task Programming (NTP), which bridges the idea of few-shot learning from demonstration and neural program induction. NTP takes as input a task specification (e.g., video demonstration of a task) and recursively decomposes it into finer sub-task specifications. These specifications are fed to a hierarchical neural program, where bottom-level programs are callable subroutines that interact with the environment. We validate our method in three robot manipulation tasks. NTP achieves strong generalization across sequential tasks that exhibit hierarchal and compositional structures. The experimental results show that NTP learns to generalize well to- wards unseen tasks with increasing lengths, variable topologies, and changing objectives.Comment: ICRA 201

    Learning Generalized Reactive Policies using Deep Neural Networks

    Full text link
    We present a new approach to learning for planning, where knowledge acquired while solving a given set of planning problems is used to plan faster in related, but new problem instances. We show that a deep neural network can be used to learn and represent a \emph{generalized reactive policy} (GRP) that maps a problem instance and a state to an action, and that the learned GRPs efficiently solve large classes of challenging problem instances. In contrast to prior efforts in this direction, our approach significantly reduces the dependence of learning on handcrafted domain knowledge or feature selection. Instead, the GRP is trained from scratch using a set of successful execution traces. We show that our approach can also be used to automatically learn a heuristic function that can be used in directed search algorithms. We evaluate our approach using an extensive suite of experiments on two challenging planning problem domains and show that our approach facilitates learning complex decision making policies and powerful heuristic functions with minimal human input. Videos of our results are available at goo.gl/Hpy4e3

    Graph-based task libraries for robots: generalization and autocompletion

    Get PDF
    In this paper, we consider an autonomous robot that persists over time performing tasks and the problem of providing one additional task to the robot's task library. We present an approach to generalize tasks, represented as parameterized graphs with sequences, conditionals, and looping constructs of sensing and actuation primitives. Our approach performs graph-structure task generalization, while maintaining task ex- ecutability and parameter value distributions. We present an algorithm that, given the initial steps of a new task, proposes an autocompletion based on a recognized past similar task. Our generalization and auto- completion contributions are eective on dierent real robots. We show concrete examples of the robot primitives and task graphs, as well as results, with Baxter. In experiments with multiple tasks, we show a sig- nicant reduction in the number of new task steps to be provided
    • …
    corecore