22 research outputs found

    Learning and calibrating per-location classifiers for visual place recognition

    Get PDF
    International audienceThe aim of this work is to localize a query photograph by finding other images depicting the same place in a large geotagged image database. This is a challenging task due to changes in viewpoint, imaging conditions and the large size of the image database. The contribution of this work is two-fold. First, we cast the place recognition problem as a classification task and use the available geotags to train a classifier for each location in the database in a similar manner to per-exemplar SVMs in object recognition. Second, as only few positive training examples are available for each location, we propose a new approach to calibrate all the per-location SVM classifiers using only the negative examples. The calibration we propose relies on a significance measure essentially equivalent to the p-values classically used in statistical hypothesis testing. Experiments are per-formed on a database of 25,000 geotagged street view images of Pittsburgh and demonstrate improved place recognition accuracy of the proposed approach over the previous work

    Indexing ensembles of exemplar-SVMs with rejecting taxonomies

    Get PDF
    Ensembles of Exemplar-SVMs have been used for a wide variety of tasks, such as object detection, segmentation, label transfer and mid-level feature learning. In order to make this technique effective though a large collection of classifiers is needed, which often makes the evaluation phase prohibitive. To overcome this issue we exploit the joint distribution of exemplar classifier scores to build a taxonomy capable of indexing each Exemplar-SVM and enabling a fast evaluation of the whole ensemble. We experiment with the Pascal 2007 benchmark on the task of object detection and on a simple segmentation task, in order to verify the robustness of our indexing data structure with reference to the standard Ensemble. We also introduce a rejection strategy to discard not relevant image patches for a more efficient access to the data

    Under the Radar: Learning to Predict Robust Keypoints for Odometry Estimation and Metric Localisation in Radar

    Full text link
    This paper presents a self-supervised framework for learning to detect robust keypoints for odometry estimation and metric localisation in radar. By embedding a differentiable point-based motion estimator inside our architecture, we learn keypoint locations, scores and descriptors from localisation error alone. This approach avoids imposing any assumption on what makes a robust keypoint and crucially allows them to be optimised for our application. Furthermore the architecture is sensor agnostic and can be applied to most modalities. We run experiments on 280km of real world driving from the Oxford Radar RobotCar Dataset and improve on the state-of-the-art in point-based radar odometry, reducing errors by up to 45% whilst running an order of magnitude faster, simultaneously solving metric loop closures. Combining these outputs, we provide a framework capable of full mapping and localisation with radar in urban environments.Comment: Video summary: https://youtu.be/L-PO7nxWpJ

    A Hierarchical Dual Model of Environment- and Place-Specific Utility for Visual Place Recognition

    Full text link
    Visual Place Recognition (VPR) approaches have typically attempted to match places by identifying visual cues, image regions or landmarks that have high ``utility'' in identifying a specific place. But this concept of utility is not singular - rather it can take a range of forms. In this paper, we present a novel approach to deduce two key types of utility for VPR: the utility of visual cues `specific' to an environment, and to a particular place. We employ contrastive learning principles to estimate both the environment- and place-specific utility of Vector of Locally Aggregated Descriptors (VLAD) clusters in an unsupervised manner, which is then used to guide local feature matching through keypoint selection. By combining these two utility measures, our approach achieves state-of-the-art performance on three challenging benchmark datasets, while simultaneously reducing the required storage and compute time. We provide further analysis demonstrating that unsupervised cluster selection results in semantically meaningful results, that finer grained categorization often has higher utility for VPR than high level semantic categorization (e.g. building, road), and characterise how these two utility measures vary across different places and environments. Source code is made publicly available at https://github.com/Nik-V9/HEAPUtil.Comment: Accepted to IEEE Robotics and Automation Letters (RA-L) and IROS 202
    corecore