10 research outputs found

    Learning Accurate Kinematic Control of Cable-Driven Surgical Robots Using Data Cleaning and Gaussian Process Regression

    No full text
    Abstract — Precise control of industrial automation systems with non-linear kinematics due to joint elasticity, variation in cable tensioning, or backlash is challenging; especially in systems that can only be controlled through an interface with an imprecise internal kinematic model. Cable-driven Robotic Surgical Assistants (RSAs) are one example of such an automation system, as they are designed for master-slave teleoperation. We consider the problem of learning a function to modify commands to the inaccurate control interface such that executing the modified command on the system results in a desired state. To achieve this, we must learn a mapping that accounts for the non-linearities in the kinematic chain that are not accounted for by the system’s internal model. Gaussian Process Regression (GPR) is a data-driven technique that can estimate this non-linear correction in a task-specific region of state space, but it is sensitive to corruption of training examples due to partial occlusion or lighting changes. In this paper, we extend the use of GPR to learn a non-linear correction for cable-driven surgical robots by using i) velocity as a feature in the regression and ii) removing corrupted training observations based on rotation limits and the magnitude of velocity. We evaluate this approach on the Raven II Surgical Robot on the task of grasping foam “damaged tissue ” fragments, using the PhaseSpace LED-based motion capture system to track the Raven end-effector. Our main result is a reduction in the norm of the mean position error from 2.6 cm to 0.2 cm and the norm of the mean angular error from 20.6 degrees to 2.8 degrees when correcting commands for a set of held-out trajectories. We also use the learned mapping to achieve a 3.8 × speedup over past results on the task of autonomous surgical debridement. Further information on this research, including data, code, photos, and video, is available a

    Accelerating Surgical Robotics Research: A Review of 10 Years With the da Vinci Research Kit

    Get PDF
    Robotic-assisted surgery is now well-established in clinical practice and has become the gold standard clinical treatment option for several clinical indications. The field of robotic-assisted surgery is expected to grow substantially in the next decade with a range of new robotic devices emerging to address unmet clinical needs across different specialities. A vibrant surgical robotics research community is pivotal for conceptualizing such new systems as well as for developing and training the engineers and scientists to translate them into practice. The da Vinci Research Kit (dVRK), an academic and industry collaborative effort to re-purpose decommissioned da Vinci surgical systems (Intuitive Surgical Inc, CA, USA) as a research platform for surgical robotics research, has been a key initiative for addressing a barrier to entry for new research groups in surgical robotics. In this paper, we present an extensive review of the publications that have been facilitated by the dVRK over the past decade. We classify research efforts into different categories and outline some of the major challenges and needs for the robotics community to maintain this initiative and build upon it
    corecore