63,259 research outputs found

    Large Scale Image Segmentation with Structured Loss based Deep Learning for Connectome Reconstruction

    Full text link
    We present a method combining affinity prediction with region agglomeration, which improves significantly upon the state of the art of neuron segmentation from electron microscopy (EM) in accuracy and scalability. Our method consists of a 3D U-NET, trained to predict affinities between voxels, followed by iterative region agglomeration. We train using a structured loss based on MALIS, encouraging topologically correct segmentations obtained from affinity thresholding. Our extension consists of two parts: First, we present a quasi-linear method to compute the loss gradient, improving over the original quadratic algorithm. Second, we compute the gradient in two separate passes to avoid spurious gradient contributions in early training stages. Our predictions are accurate enough that simple learning-free percentile-based agglomeration outperforms more involved methods used earlier on inferior predictions. We present results on three diverse EM datasets, achieving relative improvements over previous results of 27%, 15%, and 250%. Our findings suggest that a single method can be applied to both nearly isotropic block-face EM data and anisotropic serial sectioned EM data. The runtime of our method scales linearly with the size of the volume and achieves a throughput of about 2.6 seconds per megavoxel, qualifying our method for the processing of very large datasets

    Provable Multi-Task Representation Learning by Two-Layer ReLU Neural Networks

    Full text link
    Feature learning, i.e. extracting meaningful representations of data, is quintessential to the practical success of neural networks trained with gradient descent, yet it is notoriously difficult to explain how and why it occurs. Recent theoretical studies have shown that shallow neural networks optimized on a single task with gradient-based methods can learn meaningful features, extending our understanding beyond the neural tangent kernel or random feature regime in which negligible feature learning occurs. But in practice, neural networks are increasingly often trained on {\em many} tasks simultaneously with differing loss functions, and these prior analyses do not generalize to such settings. In the multi-task learning setting, a variety of studies have shown effective feature learning by simple linear models. However, multi-task learning via {\em nonlinear} models, arguably the most common learning paradigm in practice, remains largely mysterious. In this work, we present the first results proving feature learning occurs in a multi-task setting with a nonlinear model. We show that when the tasks are binary classification problems with labels depending on only rr directions within the ambient d≫rd\gg r-dimensional input space, executing a simple gradient-based multitask learning algorithm on a two-layer ReLU neural network learns the ground-truth rr directions. In particular, any downstream task on the rr ground-truth coordinates can be solved by learning a linear classifier with sample and neuron complexity independent of the ambient dimension dd, while a random feature model requires exponential complexity in dd for such a guarantee

    SuperSpike: Supervised learning in multi-layer spiking neural networks

    Full text link
    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in-vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in-silico. Here we revisit the problem of supervised learning in temporally coding multi-layer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three factor learning rule capable of training multi-layer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike-time patterns
    • …
    corecore