1,309 research outputs found

    Fine-Grained Image Analysis with Deep Learning: A Survey

    Get PDF
    Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer vision and pattern recognition, and underpins a diverse set of real-world applications. The task of FGIA targets analyzing visual objects from subordinate categories, e.g., species of birds or models of cars. The small inter-class and large intra-class variation inherent to fine-grained image analysis makes it a challenging problem. Capitalizing on advances in deep learning, in recent years we have witnessed remarkable progress in deep learning powered FGIA. In this paper we present a systematic survey of these advances, where we attempt to re-define and broaden the field of FGIA by consolidating two fundamental fine-grained research areas -- fine-grained image recognition and fine-grained image retrieval. In addition, we also review other key issues of FGIA, such as publicly available benchmark datasets and related domain-specific applications. We conclude by highlighting several research directions and open problems which need further exploration from the community.Comment: Accepted by IEEE TPAM

    Expert Knowledge-Guided Length-Variant Hierarchical Label Generation for Proposal Classification

    Full text link
    To advance the development of science and technology, research proposals are submitted to open-court competitive programs developed by government agencies (e.g., NSF). Proposal classification is one of the most important tasks to achieve effective and fair review assignments. Proposal classification aims to classify a proposal into a length-variant sequence of labels. In this paper, we formulate the proposal classification problem into a hierarchical multi-label classification task. Although there are certain prior studies, proposal classification exhibit unique features: 1) the classification result of a proposal is in a hierarchical discipline structure with different levels of granularity; 2) proposals contain multiple types of documents; 3) domain experts can empirically provide partial labels that can be leveraged to improve task performances. In this paper, we focus on developing a new deep proposal classification framework to jointly model the three features. In particular, to sequentially generate labels, we leverage previously-generated labels to predict the label of next level; to integrate partial labels from experts, we use the embedding of these empirical partial labels to initialize the state of neural networks. Our model can automatically identify the best length of label sequence to stop next label prediction. Finally, we present extensive results to demonstrate that our method can jointly model partial labels, textual information, and semantic dependencies in label sequences, and, thus, achieve advanced performances.Comment: 10 pages, Accepted as regular paper by ICDM 202

    Context Embedding Networks

    Get PDF
    Low dimensional embeddings that capture the main variations of interest in collections of data are important for many applications. One way to construct these embeddings is to acquire estimates of similarity from the crowd. However, similarity is a multi-dimensional concept that varies from individual to individual. Existing models for learning embeddings from the crowd typically make simplifying assumptions such as all individuals estimate similarity using the same criteria, the list of criteria is known in advance, or that the crowd workers are not influenced by the data that they see. To overcome these limitations we introduce Context Embedding Networks (CENs). In addition to learning interpretable embeddings from images, CENs also model worker biases for different attributes along with the visual context i.e. the visual attributes highlighted by a set of images. Experiments on two noisy crowd annotated datasets show that modeling both worker bias and visual context results in more interpretable embeddings compared to existing approaches.Comment: CVPR 2018 spotligh

    Delving into Multimodal Prompting for Fine-grained Visual Classification

    Full text link
    Fine-grained visual classification (FGVC) involves categorizing fine subdivisions within a broader category, which poses challenges due to subtle inter-class discrepancies and large intra-class variations. However, prevailing approaches primarily focus on uni-modal visual concepts. Recent advancements in pre-trained vision-language models have demonstrated remarkable performance in various high-level vision tasks, yet the applicability of such models to FGVC tasks remains uncertain. In this paper, we aim to fully exploit the capabilities of cross-modal description to tackle FGVC tasks and propose a novel multimodal prompting solution, denoted as MP-FGVC, based on the contrastive language-image pertaining (CLIP) model. Our MP-FGVC comprises a multimodal prompts scheme and a multimodal adaptation scheme. The former includes Subcategory-specific Vision Prompt (SsVP) and Discrepancy-aware Text Prompt (DaTP), which explicitly highlights the subcategory-specific discrepancies from the perspectives of both vision and language. The latter aligns the vision and text prompting elements in a common semantic space, facilitating cross-modal collaborative reasoning through a Vision-Language Fusion Module (VLFM) for further improvement on FGVC. Moreover, we tailor a two-stage optimization strategy for MP-FGVC to fully leverage the pre-trained CLIP model and expedite efficient adaptation for FGVC. Extensive experiments conducted on four FGVC datasets demonstrate the effectiveness of our MP-FGVC.Comment: The first two authors contributed equally to this wor
    • …
    corecore