21 research outputs found

    On Multistage Learning a Hidden Hypergraph

    Full text link
    Learning a hidden hypergraph is a natural generalization of the classical group testing problem that consists in detecting unknown hypergraph Hun=H(V,E)H_{un}=H(V,E) by carrying out edge-detecting tests. In the given paper we focus our attention only on a specific family F(t,s,β„“)F(t,s,\ell) of localized hypergraphs for which the total number of vertices ∣V∣=t|V| = t, the number of edges ∣Eβˆ£β‰€s|E|\le s, sβ‰ͺts\ll t, and the cardinality of any edge ∣eβˆ£β‰€β„“|e|\le\ell, β„“β‰ͺt\ell\ll t. Our goal is to identify all edges of Hun∈F(t,s,β„“)H_{un}\in F(t,s,\ell) by using the minimal number of tests. We develop an adaptive algorithm that matches the information theory bound, i.e., the total number of tests of the algorithm in the worst case is at most sβ„“log⁑2t(1+o(1))s\ell\log_2 t(1+o(1)). We also discuss a probabilistic generalization of the problem.Comment: 5 pages, IEEE conferenc

    Concomitant Group Testing

    Full text link
    In this paper, we introduce a variation of the group testing problem capturing the idea that a positive test requires a combination of multiple ``types'' of item. Specifically, we assume that there are multiple disjoint \emph{semi-defective sets}, and a test is positive if and only if it contains at least one item from each of these sets. The goal is to reliably identify all of the semi-defective sets using as few tests as possible, and we refer to this problem as \textit{Concomitant Group Testing} (ConcGT). We derive a variety of algorithms for this task, focusing primarily on the case that there are two semi-defective sets. Our algorithms are distinguished by (i) whether they are deterministic (zero-error) or randomized (small-error), and (ii) whether they are non-adaptive, fully adaptive, or have limited adaptivity (e.g., 2 or 3 stages). Both our deterministic adaptive algorithm and our randomized algorithms (non-adaptive or limited adaptivity) are order-optimal in broad scaling regimes of interest, and improve significantly over baseline results that are based on solving a more general problem as an intermediate step (e.g., hypergraph learning).Comment: 15 pages, 3 figures, 1 tabl

    Optimal Query Complexity for Reconstructing Hypergraphs

    Get PDF
    In this paper we consider the problem of reconstructing a hidden weighted hypergraph of constant rank using additive queries. We prove the following: Let GG be a weighted hidden hypergraph of constant rank with n vertices and mm hyperedges. For any mm there exists a non-adaptive algorithm that finds the edges of the graph and their weights using O(mlog⁑nlog⁑m) O(\frac{m\log n}{\log m}) additive queries. This solves the open problem in [S. Choi, J. H. Kim. Optimal Query Complexity Bounds for Finding Graphs. {\em STOC}, 749--758,~2008]. When the weights of the hypergraph are integers that are less than O(poly(nd/m))O(poly(n^d/m)) where dd is the rank of the hypergraph (and therefore for unweighted hypergraphs) there exists a non-adaptive algorithm that finds the edges of the graph and their weights using O(mlog⁑ndmlog⁑m). O(\frac{m\log \frac{n^d}{m}}{\log m}). additive queries. Using the information theoretic bound the above query complexities are tight

    Learning Boolean Halfspaces with Small Weights from Membership Queries

    Full text link
    We consider the problem of proper learning a Boolean Halfspace with integer weights {0,1,…,t}\{0,1,\ldots,t\} from membership queries only. The best known algorithm for this problem is an adaptive algorithm that asks nO(t5)n^{O(t^5)} membership queries where the best lower bound for the number of membership queries is ntn^t [Learning Threshold Functions with Small Weights Using Membership Queries. COLT 1999] In this paper we close this gap and give an adaptive proper learning algorithm with two rounds that asks nO(t)n^{O(t)} membership queries. We also give a non-adaptive proper learning algorithm that asks nO(t3)n^{O(t^3)} membership queries
    corecore