18 research outputs found

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table

    DoPAMINE: Double-sided Masked CNN for Pixel Adaptive Multiplicative Noise Despeckling

    Full text link
    We propose DoPAMINE, a new neural network based multiplicative noise despeckling algorithm. Our algorithm is inspired by Neural AIDE (N-AIDE), which is a recently proposed neural adaptive image denoiser. While the original N-AIDE was designed for the additive noise case, we show that the same framework, i.e., adaptively learning a network for pixel-wise affine denoisers by minimizing an unbiased estimate of MSE, can be applied to the multiplicative noise case as well. Moreover, we derive a double-sided masked CNN architecture which can control the variance of the activation values in each layer and converge fast to high denoising performance during supervised training. In the experimental results, we show our DoPAMINE possesses high adaptivity via fine-tuning the network parameters based on the given noisy image and achieves significantly better despeckling results compared to SAR-DRN, a state-of-the-art CNN-based algorithm.Comment: AAAI 2019 Camera Ready Versio

    Deep Learning Model Based on ResNet-50 for Beef Quality Classification

    Get PDF
    Food quality measurement is one of the most essential topics in agriculture and industrial fields. To classify healthy food using computer visual inspection, a new architecture was proposed to classify beef images to specify the rancid and healthy ones. In traditional measurements, the specialists are not able to classify such images, due to the huge number of beef images required to build a deep learning model. In the present study, different images of beef including healthy and rancid cases were collected according to the analysis done by the Laboratory of Food Technology, Faculty of Agriculture, Kafrelsheikh University in January of 2020. The texture analysis of the beef surface of the enrolled images makes it difficult to distinguish between the rancid and healthy images. Moreover, a deep learning approach based on ResNet-50 was presented as a promising classifier to grade and classify the beef images. In this work, a limited number of images were used to present the research problem of image resource limitation; eight healthy images and ten rancid beef images. This number of images is not sufficient to be retrained using deep learning approaches. Thus, Generative Adversarial Network (GAN) was proposed to augment the enrolled images to produce one hundred eighty images. The results obtained based on ResNet-50 classification achieve accuracy of 96.03%, 91.67%, and 88.89% in the training, testing, and validation phases, respectively. Furthermore, a comparison of the current model (ResNet-50) with the classical and deep learning architecture is made to demonstrate the efficiency of ResNet-50, in image classification

    PowerFusion: A Tensor Compiler with Explicit Data Movement Description and Instruction-level Graph IR

    Full text link
    Deep neural networks (DNNs) are of critical use in different domains. To accelerate DNN computation, tensor compilers are proposed to generate efficient code on different domain-specific accelerators. Existing tensor compilers mainly focus on optimizing computation efficiency. However, memory access is becoming a key performance bottleneck because the computational performance of accelerators is increasing much faster than memory performance. The lack of direct description of memory access and data dependence in current tensor compilers' intermediate representation (IR) brings significant challenges to generate memory-efficient code. In this paper, we propose IntelliGen, a tensor compiler that can generate high-performance code for memory-intensive operators by considering both computation and data movement optimizations. IntelliGen represent a DNN program using GIR, which includes primitives indicating its computation, data movement, and parallel strategies. This information will be further composed as an instruction-level dataflow graph to perform holistic optimizations by searching different memory access patterns and computation operations, and generating memory-efficient code on different hardware. We evaluate IntelliGen on NVIDIA GPU, AMD GPU, and Cambricon MLU, showing speedup up to 1.97x, 2.93x, and 16.91x(1.28x, 1.23x, and 2.31x on average), respectively, compared to current most performant frameworks.Comment: 12 pages, 14 figure

    deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

    Full text link
    Deep learning (DL) has proven to be a suitable approach for despeckling synthetic aperture radar (SAR) images. So far, most DL models are trained to reduce speckle that follows a particular distribution, either using simulated noise or a specific set of real SAR images, limiting the applicability of these methods for real SAR images with unknown noise statistics. In this paper, we present a DL method, deSpeckNet1, that estimates the speckle noise distribution and the despeckled image simultaneously. Since it does not depend on a specific noise model, deSpeckNet generalizes well across SAR acquisitions in a variety of landcover conditions. We evaluated the performance of deSpeckNet on single polarized Sentinel-1 images acquired in Indonesia, The Democratic Republic of Congo and The Netherlands, a single polarized ALOS-2/PALSAR-2 image acquired in Japan and an Iceye X2 image acquired in Germany. In all cases, deSpeckNet was able to effectively reduce speckle and restor
    corecore