37 research outputs found

    Learning Temporal Transformations From Time-Lapse Videos

    Full text link
    Based on life-long observations of physical, chemical, and biologic phenomena in the natural world, humans can often easily picture in their minds what an object will look like in the future. But, what about computers? In this paper, we learn computational models of object transformations from time-lapse videos. In particular, we explore the use of generative models to create depictions of objects at future times. These models explore several different prediction tasks: generating a future state given a single depiction of an object, generating a future state given two depictions of an object at different times, and generating future states recursively in a recurrent framework. We provide both qualitative and quantitative evaluations of the generated results, and also conduct a human evaluation to compare variations of our models.Comment: ECCV201

    Predicting Deeper into the Future of Semantic Segmentation

    Get PDF
    The ability to predict and therefore to anticipate the future is an important attribute of intelligence. It is also of utmost importance in real-time systems, e.g. in robotics or autonomous driving, which depend on visual scene understanding for decision making. While prediction of the raw RGB pixel values in future video frames has been studied in previous work, here we introduce the novel task of predicting semantic segmentations of future frames. Given a sequence of video frames, our goal is to predict segmentation maps of not yet observed video frames that lie up to a second or further in the future. We develop an autoregressive convolutional neural network that learns to iteratively generate multiple frames. Our results on the Cityscapes dataset show that directly predicting future segmentations is substantially better than predicting and then segmenting future RGB frames. Prediction results up to half a second in the future are visually convincing and are much more accurate than those of a baseline based on warping semantic segmentations using optical flow.Comment: Accepted to ICCV 2017. Supplementary material available on the authors' webpage

    Learning Diverse Image Colorization

    Full text link
    Colorization is an ambiguous problem, with multiple viable colorizations for a single grey-level image. However, previous methods only produce the single most probable colorization. Our goal is to model the diversity intrinsic to the problem of colorization and produce multiple colorizations that display long-scale spatial co-ordination. We learn a low dimensional embedding of color fields using a variational autoencoder (VAE). We construct loss terms for the VAE decoder that avoid blurry outputs and take into account the uneven distribution of pixel colors. Finally, we build a conditional model for the multi-modal distribution between grey-level image and the color field embeddings. Samples from this conditional model result in diverse colorization. We demonstrate that our method obtains better diverse colorizations than a standard conditional variational autoencoder (CVAE) model, as well as a recently proposed conditional generative adversarial network (cGAN).Comment: This revision to appear in CVPR1

    Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks

    Full text link
    Taking a photo outside, can we predict the immediate future, e.g., how would the cloud move in the sky? We address this problem by presenting a generative adversarial network (GAN) based two-stage approach to generating realistic time-lapse videos of high resolution. Given the first frame, our model learns to generate long-term future frames. The first stage generates videos of realistic contents for each frame. The second stage refines the generated video from the first stage by enforcing it to be closer to real videos with regard to motion dynamics. To further encourage vivid motion in the final generated video, Gram matrix is employed to model the motion more precisely. We build a large scale time-lapse dataset, and test our approach on this new dataset. Using our model, we are able to generate realistic videos of up to 128Ă—128128\times 128 resolution for 32 frames. Quantitative and qualitative experiment results have demonstrated the superiority of our model over the state-of-the-art models.Comment: To appear in Proceedings of CVPR 201

    Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation

    Full text link
    For human pose estimation in monocular images, joint occlusions and overlapping upon human bodies often result in deviated pose predictions. Under these circumstances, biologically implausible pose predictions may be produced. In contrast, human vision is able to predict poses by exploiting geometric constraints of joint inter-connectivity. To address the problem by incorporating priors about the structure of human bodies, we propose a novel structure-aware convolutional network to implicitly take such priors into account during training of the deep network. Explicit learning of such constraints is typically challenging. Instead, we design discriminators to distinguish the real poses from the fake ones (such as biologically implausible ones). If the pose generator (G) generates results that the discriminator fails to distinguish from real ones, the network successfully learns the priors.Comment: Fixed typos. 14 pages. Demonstration videos are http://v.qq.com/x/page/c039862eira.html, http://v.qq.com/x/page/f0398zcvkl5.html, http://v.qq.com/x/page/w0398ei9m1r.htm

    Every Smile is Unique: Landmark-Guided Diverse Smile Generation

    Full text link
    Each smile is unique: one person surely smiles in different ways (e.g., closing/opening the eyes or mouth). Given one input image of a neutral face, can we generate multiple smile videos with distinctive characteristics? To tackle this one-to-many video generation problem, we propose a novel deep learning architecture named Conditional Multi-Mode Network (CMM-Net). To better encode the dynamics of facial expressions, CMM-Net explicitly exploits facial landmarks for generating smile sequences. Specifically, a variational auto-encoder is used to learn a facial landmark embedding. This single embedding is then exploited by a conditional recurrent network which generates a landmark embedding sequence conditioned on a specific expression (e.g., spontaneous smile). Next, the generated landmark embeddings are fed into a multi-mode recurrent landmark generator, producing a set of landmark sequences still associated to the given smile class but clearly distinct from each other. Finally, these landmark sequences are translated into face videos. Our experimental results demonstrate the effectiveness of our CMM-Net in generating realistic videos of multiple smile expressions.Comment: Accepted as a poster in Conference on Computer Vision and Pattern Recognition (CVPR), 201
    corecore