5,689 research outputs found

    Falsification of Cyber-Physical Systems with Robustness-Guided Black-Box Checking

    Full text link
    For exhaustive formal verification, industrial-scale cyber-physical systems (CPSs) are often too large and complex, and lightweight alternatives (e.g., monitoring and testing) have attracted the attention of both industrial practitioners and academic researchers. Falsification is one popular testing method of CPSs utilizing stochastic optimization. In state-of-the-art falsification methods, the result of the previous falsification trials is discarded, and we always try to falsify without any prior knowledge. To concisely memorize such prior information on the CPS model and exploit it, we employ Black-box checking (BBC), which is a combination of automata learning and model checking. Moreover, we enhance BBC using the robust semantics of STL formulas, which is the essential gadget in falsification. Our experiment results suggest that our robustness-guided BBC outperforms a state-of-the-art falsification tool.Comment: Accepted to HSCC 202

    Time Window Temporal Logic

    Full text link
    This paper introduces time window temporal logic (TWTL), a rich expressivity language for describing various time bounded specifications. In particular, the syntax and semantics of TWTL enable the compact representation of serial tasks, which are typically seen in robotics and control applications. This paper also discusses the relaxation of TWTL formulae with respect to deadlines of tasks. Efficient automata-based frameworks to solve synthesis, verification and learning problems are also presented. The key ingredient to the presented solution is an algorithm to translate a TWTL formula to an annotated finite state automaton that encodes all possible temporal relaxations of the specification. Case studies illustrating the expressivity of the logic and the proposed algorithms are included

    Time window temporal logic

    Full text link
    This paper introduces time window temporal logic (TWTL), a rich expressive language for describing various time bounded specifications. In particular, the syntax and semantics of TWTL enable the compact representation of serial tasks, which are prevalent in various applications including robotics, sensor systems, and manufacturing systems. This paper also discusses the relaxation of TWTL formulae with respect to the deadlines of the tasks. Efficient automata-based frameworks are presented to solve synthesis, verification and learning problems. The key ingredient to the presented solution is an algorithm to translate a TWTL formula to an annotated finite state automaton that encodes all possible temporal relaxations of the given formula. Some case studies are presented to illustrate the expressivity of the logic and the proposed algorithms

    Calibrating Generative Models: The Probabilistic Chomsky-SchĂĽtzenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    Computing Distances between Probabilistic Automata

    Full text link
    We present relaxed notions of simulation and bisimulation on Probabilistic Automata (PA), that allow some error epsilon. When epsilon is zero we retrieve the usual notions of bisimulation and simulation on PAs. We give logical characterisations of these notions by choosing suitable logics which differ from the elementary ones, L with negation and L without negation, by the modal operator. Using flow networks, we show how to compute the relations in PTIME. This allows the definition of an efficiently computable non-discounted distance between the states of a PA. A natural modification of this distance is introduced, to obtain a discounted distance, which weakens the influence of long term transitions. We compare our notions of distance to others previously defined and illustrate our approach on various examples. We also show that our distance is not expansive with respect to process algebra operators. Although L without negation is a suitable logic to characterise epsilon-(bi)simulation on deterministic PAs, it is not for general PAs; interestingly, we prove that it does characterise weaker notions, called a priori epsilon-(bi)simulation, which we prove to be NP-difficult to decide.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Learning Concise Models from Long Execution Traces

    Full text link
    Abstract models of system-level behaviour have applications in design exploration, analysis, testing and verification. We describe a new algorithm for automatically extracting useful models, as automata, from execution traces of a HW/SW system driven by software exercising a use-case of interest. Our algorithm leverages modern program synthesis techniques to generate predicates on automaton edges, succinctly describing system behaviour. It employs trace segmentation to tackle complexity for long traces. We learn concise models capturing transaction-level, system-wide behaviour--experimentally demonstrating the approach using traces from a variety of sources, including the x86 QEMU virtual platform and the Real-Time Linux kernel

    Architectures in parametric component-based systems: Qualitative and quantitative modelling

    Get PDF
    One of the key aspects in component-based design is specifying the software architecture that characterizes the topology and the permissible interactions of the components of a system. To achieve well-founded design there is need to address both the qualitative and non-functional aspects of architectures. In this paper we study the qualitative and quantitative formal modelling of architectures applied on parametric component-based systems, that consist of an unknown number of instances of each component. Specifically, we introduce an extended propositional interaction logic and investigate its first-order level which serves as a formal language for the interactions of parametric systems. Our logics achieve to encode the execution order of interactions, which is a main feature in several important architectures, as well as to model recursive interactions. Moreover, we prove the decidability of equivalence, satisfiability, and validity of first-order extended interaction logic formulas, and provide several examples of formulas describing well-known architectures. We show the robustness of our theory by effectively extending our results for parametric weighted architectures. For this, we study the weighted counterparts of our logics over a commutative semiring, and we apply them for modelling the quantitative aspects of concrete architectures. Finally, we prove that the equivalence problem of weighted first-order extended interaction logic formulas is decidable in a large class of semirings, namely the class (of subsemirings) of skew fields.Comment: 53 pages, 11 figure
    • …
    corecore