1,858 research outputs found

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Topographic VAEs learn Equivariant Capsules

    Get PDF

    Topographic VAEs learn Equivariant Capsules

    Get PDF
    In this work we seek to bridge the concepts of topographic organization and equivariance in neural networks. To accomplish this, we introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables. We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST. Furthermore, through topographic organization over time (i.e. temporal coherence), we demonstrate how predefined latent space transformation operators can be encouraged for observed transformed input sequences -- a primitive form of unsupervised learned equivariance. We demonstrate that this model successfully learns sets of approximately equivariant features (i.e. "capsules") directly from sequences and achieves higher likelihood on correspondingly transforming test sequences. Equivariance is verified quantitatively by measuring the approximate commutativity of the inference network and the sequence transformations. Finally, we demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks

    Towards music perception by redundancy reduction and unsupervised learning in probabilistic models

    Get PDF
    PhDThe study of music perception lies at the intersection of several disciplines: perceptual psychology and cognitive science, musicology, psychoacoustics, and acoustical signal processing amongst others. Developments in perceptual theory over the last fifty years have emphasised an approach based on Shannon’s information theory and its basis in probabilistic systems, and in particular, the idea that perceptual systems in animals develop through a process of unsupervised learning in response to natural sensory stimulation, whereby the emerging computational structures are well adapted to the statistical structure of natural scenes. In turn, these ideas are being applied to problems in music perception. This thesis is an investigation of the principle of redundancy reduction through unsupervised learning, as applied to representations of sound and music. In the first part, previous work is reviewed, drawing on literature from some of the fields mentioned above, and an argument presented in support of the idea that perception in general and music perception in particular can indeed be accommodated within a framework of unsupervised learning in probabilistic models. In the second part, two related methods are applied to two different low-level representations. Firstly, linear redundancy reduction (Independent Component Analysis) is applied to acoustic waveforms of speech and music. Secondly, the related method of sparse coding is applied to a spectral representation of polyphonic music, which proves to be enough both to recognise that the individual notes are the important structural elements, and to recover a rough transcription of the music. Finally, the concepts of distance and similarity are considered, drawing in ideas about noise, phase invariance, and topological maps. Some ecologically and information theoretically motivated distance measures are suggested, and put in to practice in a novel method, using multidimensional scaling (MDS), for visualising geometrically the dependency structure in a distributed representation.Engineering and Physical Science Research Counci
    • …
    corecore