1,990 research outputs found

    Deep CNN Framework for Audio Event Recognition using Weakly Labeled Web Data

    Full text link
    The development of audio event recognition models requires labeled training data, which are generally hard to obtain. One promising source of recordings of audio events is the large amount of multimedia data on the web. In particular, if the audio content analysis must itself be performed on web audio, it is important to train the recognizers themselves from such data. Training from these web data, however, poses several challenges, the most important being the availability of labels : labels, if any, that may be obtained for the data are generally {\em weak}, and not of the kind conventionally required for training detectors or classifiers. We propose that learning algorithms that can exploit weak labels offer an effective method to learn from web data. We then propose a robust and efficient deep convolutional neural network (CNN) based framework to learn audio event recognizers from weakly labeled data. The proposed method can train from and analyze recordings of variable length in an efficient manner and outperforms a network trained with {\em strongly labeled} web data by a considerable margin

    Secost: Sequential co-supervision for large scale weakly labeled audio event detection

    Full text link
    Weakly supervised learning algorithms are critical for scaling audio event detection to several hundreds of sound categories. Such learning models should not only disambiguate sound events efficiently with minimal class-specific annotation but also be robust to label noise, which is more apparent with weak labels instead of strong annotations. In this work, we propose a new framework for designing learning models with weak supervision by bridging ideas from sequential learning and knowledge distillation. We refer to the proposed methodology as SeCoST (pronounced Sequest) -- Sequential Co-supervision for training generations of Students. SeCoST incrementally builds a cascade of student-teacher pairs via a novel knowledge transfer method. Our evaluations on Audioset (the largest weakly labeled dataset available) show that SeCoST achieves a mean average precision of 0.383 while outperforming prior state of the art by a considerable margin.Comment: Accepted IEEE ICASSP 202

    AudioPairBank: Towards A Large-Scale Tag-Pair-Based Audio Content Analysis

    Full text link
    Recently, sound recognition has been used to identify sounds, such as car and river. However, sounds have nuances that may be better described by adjective-noun pairs such as slow car, and verb-noun pairs such as flying insects, which are under explored. Therefore, in this work we investigate the relation between audio content and both adjective-noun pairs and verb-noun pairs. Due to the lack of datasets with these kinds of annotations, we collected and processed the AudioPairBank corpus consisting of a combined total of 1,123 pairs and over 33,000 audio files. One contribution is the previously unavailable documentation of the challenges and implications of collecting audio recordings with these type of labels. A second contribution is to show the degree of correlation between the audio content and the labels through sound recognition experiments, which yielded results of 70% accuracy, hence also providing a performance benchmark. The results and study in this paper encourage further exploration of the nuances in audio and are meant to complement similar research performed on images and text in multimedia analysis.Comment: This paper is a revised version of "AudioSentibank: Large-scale Semantic Ontology of Acoustic Concepts for Audio Content Analysis

    Movie Description

    Get PDF
    Audio Description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. In total the Large Scale Movie Description Challenge (LSMDC) contains a parallel corpus of 118,114 sentences and video clips from 202 movies. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are indeed more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in a challenge organized in the context of the workshop "Describing and Understanding Video & The Large Scale Movie Description Challenge (LSMDC)", at ICCV 2015
    • …
    corecore