3,150 research outputs found

    Learning Semantically Meaningful Embeddings Using Linear Constraints

    Get PDF

    Hierarchy-based Image Embeddings for Semantic Image Retrieval

    Full text link
    Deep neural networks trained for classification have been found to learn powerful image representations, which are also often used for other tasks such as comparing images w.r.t. their visual similarity. However, visual similarity does not imply semantic similarity. In order to learn semantically discriminative features, we propose to map images onto class embeddings whose pair-wise dot products correspond to a measure of semantic similarity between classes. Such an embedding does not only improve image retrieval results, but could also facilitate integrating semantics for other tasks, e.g., novelty detection or few-shot learning. We introduce a deterministic algorithm for computing the class centroids directly based on prior world-knowledge encoded in a hierarchy of classes such as WordNet. Experiments on CIFAR-100, NABirds, and ImageNet show that our learned semantic image embeddings improve the semantic consistency of image retrieval results by a large margin.Comment: Accepted at WACV 2019. Source code: https://github.com/cvjena/semantic-embedding

    Conditional Similarity Networks

    Full text link
    What makes images similar? To measure the similarity between images, they are typically embedded in a feature-vector space, in which their distance preserve the relative dissimilarity. However, when learning such similarity embeddings the simplifying assumption is commonly made that images are only compared to one unique measure of similarity. A main reason for this is that contradicting notions of similarities cannot be captured in a single space. To address this shortcoming, we propose Conditional Similarity Networks (CSNs) that learn embeddings differentiated into semantically distinct subspaces that capture the different notions of similarities. CSNs jointly learn a disentangled embedding where features for different similarities are encoded in separate dimensions as well as masks that select and reweight relevant dimensions to induce a subspace that encodes a specific similarity notion. We show that our approach learns interpretable image representations with visually relevant semantic subspaces. Further, when evaluating on triplet questions from multiple similarity notions our model even outperforms the accuracy obtained by training individual specialized networks for each notion separately.Comment: CVPR 201

    Tile2Vec: Unsupervised representation learning for spatially distributed data

    Full text link
    Geospatial analysis lacks methods like the word vector representations and pre-trained networks that significantly boost performance across a wide range of natural language and computer vision tasks. To fill this gap, we introduce Tile2Vec, an unsupervised representation learning algorithm that extends the distributional hypothesis from natural language -- words appearing in similar contexts tend to have similar meanings -- to spatially distributed data. We demonstrate empirically that Tile2Vec learns semantically meaningful representations on three datasets. Our learned representations significantly improve performance in downstream classification tasks and, similar to word vectors, visual analogies can be obtained via simple arithmetic in the latent space.Comment: 8 pages, 4 figures in main text; 9 pages, 11 figures in appendi
    corecore