2 research outputs found

    End-to-End Deep Learning Model for Cardiac Cycle Synchronization from Multi-View Angiographic Sequences

    Full text link
    Dynamic reconstructions (3D+T) of coronary arteries could give important perfusion details to clinicians. Temporal matching of the different views, which may not be acquired simultaneously, is a prerequisite for an accurate stereo-matching of the coronary segments. In this paper, we show how a neural network can be trained from angiographic sequences to synchronize different views during the cardiac cycle using raw x-ray angiography videos exclusively. First, we train a neural network model with angiographic sequences to extract features describing the progression of the cardiac cycle. Then, we compute the distance between the feature vectors of every frame from the first view with those from the second view to generate distance maps that display stripe patterns. Using pathfinding, we extract the best temporally coherent associations between each frame of both videos. Finally, we compare the synchronized frames of an evaluation set with the ECG signals to show an alignment with 96.04% accuracy

    Learning Robust Video Synchronization without Annotations

    No full text
    Aligning video sequences is a fundamental yet still unsolved component for a broad range of applications in computer graphics and vision. Most classical image processing methods cannot be directly applied to related video problems due to the high amount of underlying data and their limit to small changes in appearance. We present a scalable and robust method for computing a non-linear temporal video alignment. The approach autonomously manages its training data for learning a meaningful representation in an iterative procedure each time increasing its own knowledge. It leverages on the nature of the videos themselves to remove the need for manually created labels. While previous alignment methods similarly consider weather conditions, season and illumination, our approach is able to align videos from data recorded months apart.Comment: International Conference On Machine Learning And Applications (ICMLA 2017
    corecore