415 research outputs found

    Learning pseudo-Boolean k-DNF and Submodular Functions

    Full text link
    We prove that any submodular function f: {0,1}^n -> {0,1,...,k} can be represented as a pseudo-Boolean 2k-DNF formula. Pseudo-Boolean DNFs are a natural generalization of DNF representation for functions with integer range. Each term in such a formula has an associated integral constant. We show that an analog of Hastad's switching lemma holds for pseudo-Boolean k-DNFs if all constants associated with the terms of the formula are bounded. This allows us to generalize Mansour's PAC-learning algorithm for k-DNFs to pseudo-Boolean k-DNFs, and hence gives a PAC-learning algorithm with membership queries under the uniform distribution for submodular functions of the form f:{0,1}^n -> {0,1,...,k}. Our algorithm runs in time polynomial in n, k^{O(k \log k / \epsilon)}, 1/\epsilon and log(1/\delta) and works even in the agnostic setting. The line of previous work on learning submodular functions [Balcan, Harvey (STOC '11), Gupta, Hardt, Roth, Ullman (STOC '11), Cheraghchi, Klivans, Kothari, Lee (SODA '12)] implies only n^{O(k)} query complexity for learning submodular functions in this setting, for fixed epsilon and delta. Our learning algorithm implies a property tester for submodularity of functions f:{0,1}^n -> {0, ..., k} with query complexity polynomial in n for k=O((\log n/ \loglog n)^{1/2}) and constant proximity parameter \epsilon

    Learning DNF Expressions from Fourier Spectrum

    Full text link
    Since its introduction by Valiant in 1984, PAC learning of DNF expressions remains one of the central problems in learning theory. We consider this problem in the setting where the underlying distribution is uniform, or more generally, a product distribution. Kalai, Samorodnitsky and Teng (2009) showed that in this setting a DNF expression can be efficiently approximated from its "heavy" low-degree Fourier coefficients alone. This is in contrast to previous approaches where boosting was used and thus Fourier coefficients of the target function modified by various distributions were needed. This property is crucial for learning of DNF expressions over smoothed product distributions, a learning model introduced by Kalai et al. (2009) and inspired by the seminal smoothed analysis model of Spielman and Teng (2001). We introduce a new approach to learning (or approximating) a polynomial threshold functions which is based on creating a function with range [-1,1] that approximately agrees with the unknown function on low-degree Fourier coefficients. We then describe conditions under which this is sufficient for learning polynomial threshold functions. Our approach yields a new, simple algorithm for approximating any polynomial-size DNF expression from its "heavy" low-degree Fourier coefficients alone. Our algorithm greatly simplifies the proof of learnability of DNF expressions over smoothed product distributions. We also describe an application of our algorithm to learning monotone DNF expressions over product distributions. Building on the work of Servedio (2001), we give an algorithm that runs in time \poly((s \cdot \log{(s/\eps)})^{\log{(s/\eps)}}, n), where ss is the size of the target DNF expression and \eps is the accuracy. This improves on \poly((s \cdot \log{(ns/\eps)})^{\log{(s/\eps)} \cdot \log{(1/\eps)}}, n) bound of Servedio (2001).Comment: Appears in Conference on Learning Theory (COLT) 201

    Learning Coverage Functions and Private Release of Marginals

    Full text link
    We study the problem of approximating and learning coverage functions. A function c:2[n]R+c: 2^{[n]} \rightarrow \mathbf{R}^{+} is a coverage function, if there exists a universe UU with non-negative weights w(u)w(u) for each uUu \in U and subsets A1,A2,,AnA_1, A_2, \ldots, A_n of UU such that c(S)=uiSAiw(u)c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u). Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any γ,δ>0\gamma,\delta>0, given random and uniform examples of an unknown coverage function cc, finds a function hh that approximates cc within factor 1+γ1+\gamma on all but δ\delta-fraction of the points in time poly(n,1/γ,1/δ)poly(n,1/\gamma,1/\delta). This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess 1\ell_1-error ϵ\epsilon over all product and symmetric distributions in time nlog(1/ϵ)n^{\log(1/\epsilon)}. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time 2O~(n1/3)2^{\tilde{O}(n^{1/3})} (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any knk \leq n, we obtain private release of kk-way marginals with average error αˉ\bar{\alpha} in time nO(log(1/αˉ))n^{O(\log(1/\bar{\alpha}))}

    Top-Down Induction of Decision Trees: Rigorous Guarantees and Inherent Limitations

    Get PDF
    Consider the following heuristic for building a decision tree for a function f:{0,1}n{±1}f : \{0,1\}^n \to \{\pm 1\}. Place the most influential variable xix_i of ff at the root, and recurse on the subfunctions fxi=0f_{x_i=0} and fxi=1f_{x_i=1} on the left and right subtrees respectively; terminate once the tree is an ε\varepsilon-approximation of ff. We analyze the quality of this heuristic, obtaining near-matching upper and lower bounds: \circ Upper bound: For every ff with decision tree size ss and every ε(0,12)\varepsilon \in (0,\frac1{2}), this heuristic builds a decision tree of size at most sO(log(s/ε)log(1/ε))s^{O(\log(s/\varepsilon)\log(1/\varepsilon))}. \circ Lower bound: For every ε(0,12)\varepsilon \in (0,\frac1{2}) and s2O~(n)s \le 2^{\tilde{O}(\sqrt{n})}, there is an ff with decision tree size ss such that this heuristic builds a decision tree of size sΩ~(logs)s^{\tilde{\Omega}(\log s)}. We also obtain upper and lower bounds for monotone functions: sO(logs/ε)s^{O(\sqrt{\log s}/\varepsilon)} and sΩ~(logs4)s^{\tilde{\Omega}(\sqrt[4]{\log s } )} respectively. The lower bound disproves conjectures of Fiat and Pechyony (2004) and Lee (2009). Our upper bounds yield new algorithms for properly learning decision trees under the uniform distribution. We show that these algorithms---which are motivated by widely employed and empirically successful top-down decision tree learning heuristics such as ID3, C4.5, and CART---achieve provable guarantees that compare favorably with those of the current fastest algorithm (Ehrenfeucht and Haussler, 1989). Our lower bounds shed new light on the limitations of these heuristics. Finally, we revisit the classic work of Ehrenfeucht and Haussler. We extend it to give the first uniform-distribution proper learning algorithm that achieves polynomial sample and memory complexity, while matching its state-of-the-art quasipolynomial runtime

    Approximate resilience, monotonicity, and the complexity of agnostic learning

    Full text link
    A function ff is dd-resilient if all its Fourier coefficients of degree at most dd are zero, i.e., ff is uncorrelated with all low-degree parities. We study the notion of approximate\mathit{approximate} resilience\mathit{resilience} of Boolean functions, where we say that ff is α\alpha-approximately dd-resilient if ff is α\alpha-close to a [1,1][-1,1]-valued dd-resilient function in 1\ell_1 distance. We show that approximate resilience essentially characterizes the complexity of agnostic learning of a concept class CC over the uniform distribution. Roughly speaking, if all functions in a class CC are far from being dd-resilient then CC can be learned agnostically in time nO(d)n^{O(d)} and conversely, if CC contains a function close to being dd-resilient then agnostic learning of CC in the statistical query (SQ) framework of Kearns has complexity of at least nΩ(d)n^{\Omega(d)}. This characterization is based on the duality between 1\ell_1 approximation by degree-dd polynomials and approximate dd-resilience that we establish. In particular, it implies that 1\ell_1 approximation by low-degree polynomials, known to be sufficient for agnostic learning over product distributions, is in fact necessary. Focusing on monotone Boolean functions, we exhibit the existence of near-optimal α\alpha-approximately Ω~(αn)\widetilde{\Omega}(\alpha\sqrt{n})-resilient monotone functions for all α>0\alpha>0. Prior to our work, it was conceivable even that every monotone function is Ω(1)\Omega(1)-far from any 11-resilient function. Furthermore, we construct simple, explicit monotone functions based on Tribes{\sf Tribes} and CycleRun{\sf CycleRun} that are close to highly resilient functions. Our constructions are based on a fairly general resilience analysis and amplification. These structural results, together with the characterization, imply nearly optimal lower bounds for agnostic learning of monotone juntas

    DNF Sparsification and a Faster Deterministic Counting Algorithm

    Full text link
    Given a DNF formula on n variables, the two natural size measures are the number of terms or size s(f), and the maximum width of a term w(f). It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its size can be ϵ\epsilon-approximated by a width ww DNF with at most (wlog(1/ϵ))O(w)(w\log(1/\epsilon))^{O(w)} terms. We combine our sparsification result with the work of Luby and Velikovic to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic nO~(loglog(n))n^{\tilde{O}(\log \log(n))} time algorithm that computes an additive ϵ\epsilon approximation to the fraction of satisfying assignments of f for \epsilon = 1/\poly(\log n). The previous best result due to Luby and Velickovic from nearly two decades ago had a run-time of nexp(O(loglogn))n^{\exp(O(\sqrt{\log \log n}))}.Comment: To appear in the IEEE Conference on Computational Complexity, 201
    corecore