1,390 research outputs found

    Neural Contractive Dynamical Systems

    Full text link
    Stability guarantees are crucial when ensuring a fully autonomous robot does not take undesirable or potentially harmful actions. Unfortunately, global stability guarantees are hard to provide in dynamical systems learned from data, especially when the learned dynamics are governed by neural networks. We propose a novel methodology to learn neural contractive dynamical systems, where our neural architecture ensures contraction, and hence, global stability. To efficiently scale the method to high-dimensional dynamical systems, we develop a variant of the variational autoencoder that learns dynamics in a low-dimensional latent representation space while retaining contractive stability after decoding. We further extend our approach to learning contractive systems on the Lie group of rotations to account for full-pose end-effector dynamic motions. The result is the first highly flexible learning architecture that provides contractive stability guarantees with capability to perform obstacle avoidance. Empirically, we demonstrate that our approach encodes the desired dynamics more accurately than the current state-of-the-art, which provides less strong stability guarantees

    Learning Stable Koopman Models for Identification and Control of Dynamical Systems

    Get PDF
    Learning models of dynamical systems from data is a widely-studied problem in control theory and machine learning. One recent approach for modelling nonlinear systems considers the class of Koopman models, which embeds the nonlinear dynamics in a higher-dimensional linear subspace. Learning a Koopman embedding would allow for the analysis and control of nonlinear systems using tools from linear systems theory. Many recent methods have been proposed for data-driven learning of such Koopman embeddings, but most of these methods do not consider the stability of the Koopman model. Stability is an important and desirable property for models of dynamical systems. Unstable models tend to be non-robust to input perturbations and can produce unbounded outputs, which are both undesirable when the model is used for prediction and control. In addition, recent work has shown that stability guarantees may act as a regularizer for model fitting. As such, a natural direction would be to construct Koopman models with inherent stability guarantees. Two new classes of Koopman models are proposed that bridge the gap between Koopman-based methods and learning stable nonlinear models. The first model class is guaranteed to be stable, while the second is guaranteed to be stabilizable with an explicit stabilizing controller that renders the model stable in closed-loop. Furthermore, these models are unconstrained in their parameter sets, thereby enabling efficient optimization via gradient-based methods. Theoretical connections between the stability of Koopman models and forms of nonlinear stability such as contraction are established. To demonstrate the effect of the stability guarantees, the stable Koopman model is applied to a system identification problem, while the stabilizable model is applied to an imitation learning problem. Experimental results show empirically that the proposed models achieve better performance over prior methods without stability guarantees

    Stable Motion Primitives via Imitation and Contrastive Learning

    Full text link
    Learning from humans allows non-experts to program robots with ease, lowering the resources required to build complex robotic solutions. Nevertheless, such data-driven approaches often lack the ability to provide guarantees regarding their learned behaviors, which is critical for avoiding failures and/or accidents. In this work, we focus on reaching/point-to-point motions, where robots must always reach their goal, independently of their initial state. This can be achieved by modeling motions as dynamical systems and ensuring that they are globally asymptotically stable. Hence, we introduce a novel Contrastive Learning loss for training Deep Neural Networks (DNN) that, when used together with an Imitation Learning loss, enforces the aforementioned stability in the learned motions. Differently from previous work, our method does not restrict the structure of its function approximator, enabling its use with arbitrary DNNs and allowing it to learn complex motions with high accuracy. We validate it using datasets and a real robot. In the former case, motions are 2 and 4 dimensional, modeled as first- and second-order dynamical systems. In the latter, motions are 3, 4, and 6 dimensional, of first and second order, and are used to control a 7DoF robot manipulator in its end effector space and joint space. More details regarding the real-world experiments are presented in: \url{https://youtu.be/OM-2edHBRfc}

    Learning Lyapunov-Stable Polynomial Dynamical Systems Through Imitation

    Full text link
    Imitation learning is a paradigm to address complex motion planning problems by learning a policy to imitate an expert's behavior. However, relying solely on the expert's data might lead to unsafe actions when the robot deviates from the demonstrated trajectories. Stability guarantees have previously been provided utilizing nonlinear dynamical systems, acting as high-level motion planners, in conjunction with the Lyapunov stability theorem. Yet, these methods are prone to inaccurate policies, high computational cost, sample inefficiency, or quasi stability when replicating complex and highly nonlinear trajectories. To mitigate this problem, we present an approach for learning a globally stable nonlinear dynamical system as a motion planning policy. We model the nonlinear dynamical system as a parametric polynomial and learn the polynomial's coefficients jointly with a Lyapunov candidate. To showcase its success, we compare our method against the state of the art in simulation and conduct real-world experiments with the Kinova Gen3 Lite manipulator arm. Our experiments demonstrate the sample efficiency and reproduction accuracy of our method for various expert trajectories, while remaining stable in the face of perturbations.Comment: In 7th Annual Conference on Robot Learning 2023 Aug 3
    • …
    corecore