127,411 research outputs found

    Technology readiness levels for machine learning systems

    Get PDF
    The development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end. Lack of diligence can lead to technical debt, scope creep and misaligned objectives, model misuse and failures, and expensive consequences. Engineering systems, on the other hand, follow well-defined processes and testing standards to streamline development for high-quality, reliable results. The extreme is spacecraft systems, with mission critical measures and robustness throughout the process. Drawing on experience in both spacecraft engineering and machine learning (research through product across domain areas), we’ve developed a proven systems engineering approach for machine learning and artificial intelligence: the Machine Learning Technology Readiness Levels framework defines a principled process to ensure robust, reliable, and responsible systems while being streamlined for machine learning workflows, including key distinctions from traditional software engineering, and a lingua franca for people across teams and organizations to work collaboratively on machine learning and artificial intelligence technologies. Here we describe the framework and elucidate with use-cases from physics research to computer vision apps to medical diagnostics

    Technology Readiness Levels for Machine Learning Systems

    Get PDF
    The development and deployment of machine learning (ML) systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end. The lack of diligence can lead to technical debt, scope creep and misaligned objectives, model misuse and failures, and expensive consequences. Engineering systems, on the other hand, follow well-defined processes and testing standards to streamline development for high-quality, reliable results. The extreme is spacecraft systems, where mission critical measures and robustness are ingrained in the development process. Drawing on experience in both spacecraft engineering and ML (from research through product across domain areas), we have developed a proven systems engineering approach for machine learning development and deployment. Our "Machine Learning Technology Readiness Levels" (MLTRL) framework defines a principled process to ensure robust, reliable, and responsible systems while being streamlined for ML workflows, including key distinctions from traditional software engineering. Even more, MLTRL defines a lingua franca for people across teams and organizations to work collaboratively on artificial intelligence and machine learning technologies. Here we describe the framework and elucidate it with several real world use-cases of developing ML methods from basic research through productization and deployment, in areas such as medical diagnostics, consumer computer vision, satellite imagery, and particle physics

    Technology readiness levels for machine learning systems

    Get PDF
    The development and deployment of machine learning (ML) systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end. The lack of diligence can lead to technical debt, scope creep and misaligned objectives, model misuse and failures, and expensive consequences. Engineering systems, on the other hand, follow well-defined processes and testing standards to streamline development for high-quality, reliable results. The extreme is spacecraft systems, where mission critical measures and robustness are ingrained in the development process. Drawing on experience in both spacecraft engineering and ML (from research through product across domain areas), we have developed a proven systems engineering approach for machine learning development and deployment. Our Machine Learning Technology Readiness Levels (MLTRL) framework defines a principled process to ensure robust, reliable, and responsible systems while being streamlined for ML workflows, including key distinctions from traditional software engineering. Even more, MLTRL defines a lingua franca for people across teams and organizations to work collaboratively on artificial intelligence and machine learning technologies. Here we describe the framework and elucidate it with several real world use-cases of developing ML methods from basic research through productization and deployment, in areas such as medical diagnostics, consumer computer vision, satellite imagery, and particle physics

    Collaborative Software Performance Engineering for Enterprise Applications

    Get PDF
    In the domain of enterprise applications, organizations usually implement third-party standard software components in order to save costs. Hence, application performance monitoring activities constantly produce log entries that are comparable to a certain extent, holding the potential for valuable collaboration across organizational borders. Taking advantage of this fact, we propose a collaborative knowledge base, aimed to support decisions of performance engineering activities, carried out during early design phases of planned enterprise applications. To verify our assumption of cross-organizational comparability, machine learning algorithms were trained on monitoring logs of 18,927 standard application instances productively running at different organizations around the globe. Using random forests, we were able to predict the mean response time for selected standard business transactions with a mean relative error of 23.19 percent. Hence, the approach combines benefits of existing measurement-based and model-based performance prediction techniques, leading to competitive advantages, enabled by inter-organizational collaboration

    Empowering domain experts in developing AI: challenges of bottom-up ML development platforms

    Get PDF
    Recent trends in AI development, exemplified by innovations like automated machine learning and generative AI, have significantly increased the bottom-up organizational deployment of AI. No- and low-code AI tools empower domain experts to develop AI and thus foster organizational innovation. At the same time, the inherent opaqueness of AI, complemented by the abandonment of requirement to follow rigorous IS development and implementation methods, implies a loss of oversight over the IT for individual domain experts and their organization, and inability to account for the regulatory requirements on AI use. We build on expert knowledge of no- and low-code AI deployment in different types of organizations, and the emerging theorizing on weakly structured systems (WSS) to argue that conventional methods of software engineering and IS deployment can’t help organizations harness the risks of innovation-fostering bottom-up developments of ML tools by domain experts. In this research in progress paper we review the inherent risks and limitations of AI - opacity, explainability, bias, and controllability - in the context of ethical and regulatory requirements. We argue that maintaining human oversight is pivotal for the bottom-up ML developments to remain “under control” and suggest directions for future research on how to balance the innovation potential and risk in bottom-up ML development projects

    Empowering Domain Experts in Developing AI: Challenges of bottom-up ML development platforms

    Get PDF
    Recent trends in AI development, exemplified by innovations like automated machine learning and generative AI, have significantly increased the bottom-up organizational deployment of AI. No- and low-code AI tools empower domain experts to develop AI and thus foster organizational innovation. At the same time, the inherent opaqueness of AI, complemented by the abandonment of requirement to follow rigorous IS development and implementation methods, implies a loss of oversight over the IT for individual domain experts and their organization, and inability to account for the regulatory requirements on AI use. We build on expert knowledge of no- and low-code AI deployment in different types of organizations, and the emerging theorizing on weakly structured systems (WSS) to argue that conventional methods of software engineering and IS deployment can’t help organizations harness the risks of innovation-fostering bottom-up developments of ML tools by domain experts. In this research in progress paper we review the inherent risks and limitations of AI - opacity, explainability, bias, and controllability - in the context of ethical and regulatory requirements. We argue that maintaining human oversight is pivotal for the bottom-up ML developments to remain “under control” and suggest directions for future research on how to balance the innovation potential and risk in bottom-up ML development projects

    Supporting Defect Causal Analysis in Practice with Cross-Company Data on Causes of Requirements Engineering Problems

    Full text link
    [Context] Defect Causal Analysis (DCA) represents an efficient practice to improve software processes. While knowledge on cause-effect relations is helpful to support DCA, collecting cause-effect data may require significant effort and time. [Goal] We propose and evaluate a new DCA approach that uses cross-company data to support the practical application of DCA. [Method] We collected cross-company data on causes of requirements engineering problems from 74 Brazilian organizations and built a Bayesian network. Our DCA approach uses the diagnostic inference of the Bayesian network to support DCA sessions. We evaluated our approach by applying a model for technology transfer to industry and conducted three consecutive evaluations: (i) in academia, (ii) with industry representatives of the Fraunhofer Project Center at UFBA, and (iii) in an industrial case study at the Brazilian National Development Bank (BNDES). [Results] We received positive feedback in all three evaluations and the cross-company data was considered helpful for determining main causes. [Conclusions] Our results strengthen our confidence in that supporting DCA with cross-company data is promising and should be further investigated.Comment: 10 pages, 8 figures, accepted for the 39th International Conference on Software Engineering (ICSE'17
    • 

    corecore