5,460 research outputs found

    Learning Optimal Seeds for Diffusion-Based Salient Object Detection

    Full text link
    In diffusion-based saliency detection, an image is parti-tioned into superpixels and mapped to a graph, with super-pixels as nodes and edge strengths proportional to super-pixel similarity. Saliency information is then propagated over the graph using a diffusion process, whose equilibrium state yields the object saliency map. The optimal solution is the product of a propagation matrix and a saliency seed vector that contains a prior saliency assessment. This is obtained from either a bottom-up saliency detector or some heuristics. In this work, we propose a method to learn op-timal seeds for object saliency. Two types of features are computed per superpixel: the bottom-up saliency of the su-perpixel region and a set of mid-level vision features infor-mative of how likely the superpixel is to belong to an object. The combination of features that best discriminates between object and background saliency is then learned, using a large-margin formulation of the discriminant saliency prin-ciple. The propagation of the resulting saliency seeds, using a diffusion process, is finally shown to outperform the state of the art on a number of salient object detection datasets. 1

    Memory-Efficient Deep Salient Object Segmentation Networks on Gridized Superpixels

    Full text link
    Computer vision algorithms with pixel-wise labeling tasks, such as semantic segmentation and salient object detection, have gone through a significant accuracy increase with the incorporation of deep learning. Deep segmentation methods slightly modify and fine-tune pre-trained networks that have hundreds of millions of parameters. In this work, we question the need to have such memory demanding networks for the specific task of salient object segmentation. To this end, we propose a way to learn a memory-efficient network from scratch by training it only on salient object detection datasets. Our method encodes images to gridized superpixels that preserve both the object boundaries and the connectivity rules of regular pixels. This representation allows us to use convolutional neural networks that operate on regular grids. By using these encoded images, we train a memory-efficient network using only 0.048\% of the number of parameters that other deep salient object detection networks have. Our method shows comparable accuracy with the state-of-the-art deep salient object detection methods and provides a faster and a much more memory-efficient alternative to them. Due to its easy deployment, such a network is preferable for applications in memory limited devices such as mobile phones and IoT devices.Comment: 6 pages, submitted to MMSP 201

    Multiple Instance Curriculum Learning for Weakly Supervised Object Detection

    Full text link
    When supervising an object detector with weakly labeled data, most existing approaches are prone to trapping in the discriminative object parts, e.g., finding the face of a cat instead of the full body, due to lacking the supervision on the extent of full objects. To address this challenge, we incorporate object segmentation into the detector training, which guides the model to correctly localize the full objects. We propose the multiple instance curriculum learning (MICL) method, which injects curriculum learning (CL) into the multiple instance learning (MIL) framework. The MICL method starts by automatically picking the easy training examples, where the extent of the segmentation masks agree with detection bounding boxes. The training set is gradually expanded to include harder examples to train strong detectors that handle complex images. The proposed MICL method with segmentation in the loop outperforms the state-of-the-art weakly supervised object detectors by a substantial margin on the PASCAL VOC datasets.Comment: Published in BMVC 201

    What makes for effective detection proposals?

    Full text link
    Current top performing object detectors employ detection proposals to guide the search for objects, thereby avoiding exhaustive sliding window search across images. Despite the popularity and widespread use of detection proposals, it is unclear which trade-offs are made when using them during object detection. We provide an in-depth analysis of twelve proposal methods along with four baselines regarding proposal repeatability, ground truth annotation recall on PASCAL, ImageNet, and MS COCO, and their impact on DPM, R-CNN, and Fast R-CNN detection performance. Our analysis shows that for object detection improving proposal localisation accuracy is as important as improving recall. We introduce a novel metric, the average recall (AR), which rewards both high recall and good localisation and correlates surprisingly well with detection performance. Our findings show common strengths and weaknesses of existing methods, and provide insights and metrics for selecting and tuning proposal methods.Comment: TPAMI final version, duplicate proposals removed in experiment
    • …
    corecore