44,115 research outputs found

    Dense prediction of label noise for learning building extraction from aerial drone imagery

    Get PDF
    Label noise is a commonly encountered problem in learning building extraction tasks; its presence can reduce performance and increase learning complexity. This is especially true for cases where high resolution aerial drone imagery is used, as the labels may not perfectly correspond/align with the actual objects in the imagery. In general machine learning and computer vision context, labels refer to the associated class of data, and in remote sensing-based building extraction refer to pixel-level classes. Dense label noise in building extraction tasks has rarely been formalized and assessed. We formulate a taxonomy of label noise models for building extraction tasks, which incorporates both pixel-wise and dense models. While learning dense prediction under label noise, the differences between the ground truth clean label and observed noisy label can be encoded by error matrices indicating locations and type of noisy pixel-level labels. In this work, we explicitly learn to approximate error matrices for improving building extraction performance; essentially, learning dense prediction of label noise as a subtask of a larger building extraction task. We propose two new model frameworks for learning building extraction under dense real-world label noise, and consequently two new network architectures, which approximate the error matrices as intermediate predictions. The first model learns the general error matrix as an intermediate step and the second model learns the false positive and false-negative error matrices independently, as intermediate steps. Approximating intermediate error matrices can generate label noise saliency maps, for identifying labels having higher chances of being mis-labelled. We have used ultra-high-resolution aerial images, noisy observed labels from OpenStreetMap, and clean labels obtained after careful annotation by the authors. When compared to the baseline model trained and tested using clean labels, our intermediate false positive-false negative error matrix model provides Intersection-Over-Union gain of 2.74% and F1-score gain of 1.75% on the independent test set. Furthermore, our proposed models provide much higher recall than currently used deep learning models for building extraction, while providing comparable precision. We show that intermediate false positive-false negative error matrix approximation can improve performance under label noise

    A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels

    Full text link
    The recent success of deep neural networks is powered in part by large-scale well-labeled training data. However, it is a daunting task to laboriously annotate an ImageNet-like dateset. On the contrary, it is fairly convenient, fast, and cheap to collect training images from the Web along with their noisy labels. This signifies the need of alternative approaches to training deep neural networks using such noisy labels. Existing methods tackling this problem either try to identify and correct the wrong labels or reweigh the data terms in the loss function according to the inferred noisy rates. Both strategies inevitably incur errors for some of the data points. In this paper, we contend that it is actually better to ignore the labels of some of the data points than to keep them if the labels are incorrect, especially when the noisy rate is high. After all, the wrong labels could mislead a neural network to a bad local optimum. We suggest a two-stage framework for the learning from noisy labels. In the first stage, we identify a small portion of images from the noisy training set of which the labels are correct with a high probability. The noisy labels of the other images are ignored. In the second stage, we train a deep neural network in a semi-supervised manner. This framework effectively takes advantage of the whole training set and yet only a portion of its labels that are most likely correct. Experiments on three datasets verify the effectiveness of our approach especially when the noisy rate is high

    CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise

    Full text link
    In this paper, we study the problem of learning image classification models with label noise. Existing approaches depending on human supervision are generally not scalable as manually identifying correct or incorrect labels is time-consuming, whereas approaches not relying on human supervision are scalable but less effective. To reduce the amount of human supervision for label noise cleaning, we introduce CleanNet, a joint neural embedding network, which only requires a fraction of the classes being manually verified to provide the knowledge of label noise that can be transferred to other classes. We further integrate CleanNet and conventional convolutional neural network classifier into one framework for image classification learning. We demonstrate the effectiveness of the proposed algorithm on both of the label noise detection task and the image classification on noisy data task on several large-scale datasets. Experimental results show that CleanNet can reduce label noise detection error rate on held-out classes where no human supervision available by 41.5% compared to current weakly supervised methods. It also achieves 47% of the performance gain of verifying all images with only 3.2% images verified on an image classification task. Source code and dataset will be available at kuanghuei.github.io/CleanNetProject.Comment: Accepted to CVPR 201

    Robust Loss Functions under Label Noise for Deep Neural Networks

    Full text link
    In many applications of classifier learning, training data suffers from label noise. Deep networks are learned using huge training data where the problem of noisy labels is particularly relevant. The current techniques proposed for learning deep networks under label noise focus on modifying the network architecture and on algorithms for estimating true labels from noisy labels. An alternate approach would be to look for loss functions that are inherently noise-tolerant. For binary classification there exist theoretical results on loss functions that are robust to label noise. In this paper, we provide some sufficient conditions on a loss function so that risk minimization under that loss function would be inherently tolerant to label noise for multiclass classification problems. These results generalize the existing results on noise-tolerant loss functions for binary classification. We study some of the widely used loss functions in deep networks and show that the loss function based on mean absolute value of error is inherently robust to label noise. Thus standard back propagation is enough to learn the true classifier even under label noise. Through experiments, we illustrate the robustness of risk minimization with such loss functions for learning neural networks.Comment: Appeared in AAAI 201
    • …
    corecore