35,715 research outputs found

    확률적인 3차원 자세 복원과 행동인식

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 오성회.These days, computer vision technology becomes popular and plays an important role in intelligent systems, such as augment reality, video and image analysis, and to name a few. Although cost effective depth cameras, like a Microsoft Kinect, have recently developed, most computer vision algorithms assume that observations are obtained from RGB cameras, which make 2D observations. If, somehow, we can estimate 3D information from 2D observations, it might give better solutions for many computer vision problems. In this dissertation, we focus on estimating 3D information from 2D observations, which is well known as non-rigid structure from motion (NRSfM). More formally, NRSfM finds the three dimensional structure of an object by analyzing image streams with the assumption that an object lies in a low-dimensional space. However, a human body for long periods of time can have complex shape variations and it makes a challenging problem for NRSfM due to its increased degree of freedom. In order to handle complex shape variations, we propose a Procrustean normal distribution mixture model (PNDMM) by extending a recently proposed Procrustean normal distribution (PND), which captures the distribution of non-rigid variations of an object by excluding the effects of rigid motion. Unlike existing methods which use a single model to solve an NRSfM problem, the proposed PNDMM decomposes complex shape variations into a collection of simpler ones, thereby model learning can be more tractable and accurate. We perform experiments showing that the proposed method outperforms existing methods on highly complex and long human motion sequences. In addition, we extend the PNDMM to a single view 3D human pose estimation problem. While recovering a 3D structure of a human body from an image is important, it is a highly ambiguous problem due to the deformation of an articulated human body. Moreover, before estimating a 3D human pose from a 2D human pose, it is important to obtain an accurate 2D human pose. In order to address inaccuracy of 2D pose estimation on a single image and 3D human pose ambiguities, we estimate multiple 2D and 3D human pose candidates and select the best one which can be explained by a 2D human pose detector and a 3D shape model. We also introduce a model transformation which is incorporated into the 3D shape prior model, such that the proposed method can be applied to a novel test image. Experimental results show that the proposed method can provide good 3D reconstruction results when tested on a novel test image, despite inaccuracies of 2D part detections and 3D shape ambiguities. Finally, we handle an action recognition problem from a video clip. Current studies show that high-level features obtained from estimated 2D human poses enable action recognition performance beyond current state-of-the-art methods using low- and mid-level features based on appearance and motion, despite inaccuracy of human pose estimation. Based on these findings, we propose an action recognition method using estimated 3D human pose information since the proposed PNDMM is able to reconstruct 3D shapes from 2D shapes. Experimental results show that 3D pose based descriptors are better than 2D pose based descriptors for action recognition, regardless of classification methods. Considering the fact that we use simple 3D pose descriptors based on a 3D shape model which is learned from 2D shapes, results reported in this dissertation are promising and obtaining accurate 3D information from 2D observations is still an important research issue for reliable computer vision systems.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Issues 4 1.3 Organization of the Dissertation 6 Chapter 2 Preliminary 9 2.1 Generalized Procrustes Analysis (GPA) 11 2.2 EM-GPA Algorithm 12 2.2.1 Objective function 12 2.2.2 E-step 15 2.2.3 M-step 16 2.3 Implementation Considerations for EM-GPA 18 2.3.1 Preprocessing stage 18 2.3.2 Small update rate for the covariance matrix 20 2.4 Experiments 21 2.4.1 Shape alignment with the missing information 23 2.4.2 3D shape modeling 24 2.4.3 2D+3D active appearance models 28 2.5 Chapter Summary and Discussion 32 Chapter 3 Procrustean Normal Distribution Mixture Model 33 3.1 Non-Rigid Structure from Motion 35 3.2 Procrustean Normal Distribution (PND) 38 3.3 PND Mixture Model 41 3.4 Learning a PNDMM 43 3.4.1 E-step 44 3.4.2 M-step 46 3.5 Learning an Adaptive PNDMM 48 3.6 Experiments 50 3.6.1 Experimental setup 50 3.6.2 CMU Mocap database 53 3.6.3 UMPM dataset 69 3.6.4 Simple and short motions 74 3.6.5 Real sequence - qualitative representation 77 3.7 Chapter Summary 78 Chapter 4 Recovering a 3D Human Pose from a Novel Image 83 4.1 Single View 3D Human Pose Estimation 85 4.2 Candidate Generation 87 4.2.1 Initial pose generation 87 4.2.2 Part recombination 88 4.3 3D Shape Prior Model 89 4.3.1 Procrustean mixture model learning 89 4.3.2 Procrustean mixture model fitting 91 4.4 Model Transformation 92 4.4.1 Model normalization 92 4.4.2 Model adaptation 95 4.5 Result Selection 96 4.6 Experiments 98 4.6.1 Implementation details 98 4.6.2 Evaluation of the joint 2D and 3D pose estimation 99 4.6.3 Evaluation of the 2D pose estimation 104 4.6.4 Evaluation of the 3D pose estimation 106 4.7 Chapter Summary 108 Chapter 5 Application to Action Recognition 109 5.1 Appearance and Motion Based Descriptors 112 5.2 2D Pose Based Descriptors 113 5.3 Bag-of-Features with a Multiple Kernel Method 114 5.4 Classification - Kernel Group Sparse Representation 115 5.4.1 Group sparse representation for classification 116 5.4.2 Kernel group sparse (KGS) representation for classification 118 5.5 Experiment on sub-JHMDB Dataset 120 5.5.1 Experimental setup 120 5.5.2 3D pose based descriptor 122 5.5.3 Experimental results 123 5.6 Chapter Summary 129 Chapter 6 Conclusion and Future Work 131 Appendices 135 A Proof of Propositions in Chapter 2 137 A.1 Proof of Proposition 1 137 A.2 Proof of Proposition 3 138 A.3 Proof of Proposition 4 139 B Calculation of p(XijDii) in Chapter 3 141 B.1 Without the Dirac-delta term 141 B.2 With the Dirac-delta term 142 C Procrustean Mixture Model Learning and Fitting in Chapter 4 145 C.1 Procrustean Mixture Model Learning 145 C.2 Procrustean Mixture Model Fitting 147 Bibliography 153 초 록 167Docto

    3D Non-Rigid Reconstruction with Prior Shape Constraints

    Get PDF
    3D non-rigid shape recovery from a single uncalibrated camera is a challenging, under-constrained problem in computer vision. Although tremendous progress has been achieved towards solving the problem, two main limitations still exist in most previous solutions. First, current methods focus on non-incremental solutions, that is, the algorithms require collection of all the measurement data before the reconstruction takes place. This methodology is inherently unsuitable for applications requiring real-time solutions. At the same time, most of the existing approaches assume that 3D shapes can be accurately modelled in a linear subspace. These methods are simple and have been proven effective for reconstructions of objects with relatively small deformations, but have considerable limitations when the deformations are large or complex. The non-linear deformations are often observed in highly flexible objects for which the use of the linear model is impractical. Note that specific types of shape variation might be governed by only a small number of parameters and therefore can be well-represented in a low dimensional manifold. The methods proposed in this thesis aim to estimate the non-rigid shapes and the corresponding camera trajectories, based on both the observations and the prior learned manifold. Firstly, an incremental approach is proposed for estimating the deformable objects. An important advantage of this method is the ability to reconstruct the 3D shape from a newly observed image and update the parameters in 3D shape space. However, this recursive method assumes the deformable shapes only have small variations from a mean shape, thus is still not feasible for objects subject to large scale deformations. To address this problem, a series of approaches are proposed, all based on non-linear manifold learning techniques. Such manifold is used as a shape prior, with the reconstructed shapes constrained to lie within the manifold. Those non-linear manifold based approaches significantly improve the quality of reconstructed results and are well-adapted to different types of shapes undergoing significant and complex deformations. Throughout the thesis, methods are validated quantitatively on 2D points sequences projected from the 3D motion capture data for a ground truth comparison, and are qualitatively demonstrated on real example of 2D video sequences. Comparisons are made for the proposed methods against several state-of-the-art techniques, with results shown for a variety of challenging deformable objects. Extensive experiments also demonstrate the robustness of the proposed algorithms with respect to measurement noise and missing data

    Structure from Articulated Motion: Accurate and Stable Monocular 3D Reconstruction without Training Data

    Full text link
    Recovery of articulated 3D structure from 2D observations is a challenging computer vision problem with many applications. Current learning-based approaches achieve state-of-the-art accuracy on public benchmarks but are restricted to specific types of objects and motions covered by the training datasets. Model-based approaches do not rely on training data but show lower accuracy on these datasets. In this paper, we introduce a model-based method called Structure from Articulated Motion (SfAM), which can recover multiple object and motion types without training on extensive data collections. At the same time, it performs on par with learning-based state-of-the-art approaches on public benchmarks and outperforms previous non-rigid structure from motion (NRSfM) methods. SfAM is built upon a general-purpose NRSfM technique while integrating a soft spatio-temporal constraint on the bone lengths. We use alternating optimization strategy to recover optimal geometry (i.e., bone proportions) together with 3D joint positions by enforcing the bone lengths consistency over a series of frames. SfAM is highly robust to noisy 2D annotations, generalizes to arbitrary objects and does not rely on training data, which is shown in extensive experiments on public benchmarks and real video sequences. We believe that it brings a new perspective on the domain of monocular 3D recovery of articulated structures, including human motion capture.Comment: 21 pages, 8 figures, 2 table

    Non-Rigid Structure from Motion for Complex Motion

    Get PDF
    Recovering deformable 3D motion from temporal 2D point tracks in a monocular video is an open problem with many everyday applications throughout science and industry, or the new augmented reality. Recently, several techniques have been proposed to deal the problem called Non-Rigid Structure from Motion (NRSfM), however, they can exhibit poor reconstruction performance on complex motion. In this project, we will analyze these situations for primitive human actions such as walk, run, sit, jump, etc. on different scenarios, reviewing first the current techniques to finally present our novel method. This approach is able to model complex motion into a union of subspaces, rather than the summation occurring in standard low-rank shape methods, allowing better reconstruction accuracy. Experiments in a wide range of sequences and types of motion illustrate the benefits of this new approac
    corecore