2,428 research outputs found

    Tensor decompositions for learning latent variable models

    Get PDF
    This work considers a computationally and statistically efficient parameter estimation method for a wide class of latent variable models---including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation---which exploits a certain tensor structure in their low-order observable moments (typically, of second- and third-order). Specifically, parameter estimation is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric tensor derived from the moments; this decomposition can be viewed as a natural generalization of the singular value decomposition for matrices. Although tensor decompositions are generally intractable to compute, the decomposition of these specially structured tensors can be efficiently obtained by a variety of approaches, including power iterations and maximization approaches (similar to the case of matrices). A detailed analysis of a robust tensor power method is provided, establishing an analogue of Wedin's perturbation theorem for the singular vectors of matrices. This implies a robust and computationally tractable estimation approach for several popular latent variable models

    Smoothed Analysis of Tensor Decompositions

    Full text link
    Low rank tensor decompositions are a powerful tool for learning generative models, and uniqueness results give them a significant advantage over matrix decomposition methods. However, tensors pose significant algorithmic challenges and tensors analogs of much of the matrix algebra toolkit are unlikely to exist because of hardness results. Efficient decomposition in the overcomplete case (where rank exceeds dimension) is particularly challenging. We introduce a smoothed analysis model for studying these questions and develop an efficient algorithm for tensor decomposition in the highly overcomplete case (rank polynomial in the dimension). In this setting, we show that our algorithm is robust to inverse polynomial error -- a crucial property for applications in learning since we are only allowed a polynomial number of samples. While algorithms are known for exact tensor decomposition in some overcomplete settings, our main contribution is in analyzing their stability in the framework of smoothed analysis. Our main technical contribution is to show that tensor products of perturbed vectors are linearly independent in a robust sense (i.e. the associated matrix has singular values that are at least an inverse polynomial). This key result paves the way for applying tensor methods to learning problems in the smoothed setting. In particular, we use it to obtain results for learning multi-view models and mixtures of axis-aligned Gaussians where there are many more "components" than dimensions. The assumption here is that the model is not adversarially chosen, formalized by a perturbation of model parameters. We believe this an appealing way to analyze realistic instances of learning problems, since this framework allows us to overcome many of the usual limitations of using tensor methods.Comment: 32 pages (including appendix
    corecore