8,259 research outputs found

    Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness

    Get PDF
    Polynomial approximations to boolean functions have led to many positive results in computer science. In particular, polynomial approximations to the sign function underly algorithms for agnostically learning halfspaces, as well as pseudorandom generators for halfspaces. In this work, we investigate the limits of these techniques by proving inapproximability results for the sign function. Firstly, the polynomial regression algorithm of Kalai et al. (SIAM J. Comput. 2008) shows that halfspaces can be learned with respect to log-concave distributions on Rn\mathbb{R}^n in the challenging agnostic learning model. The power of this algorithm relies on the fact that under log-concave distributions, halfspaces can be approximated arbitrarily well by low-degree polynomials. We ask whether this technique can be extended beyond log-concave distributions, and establish a negative result. We show that polynomials of any degree cannot approximate the sign function to within arbitrarily low error for a large class of non-log-concave distributions on the real line, including those with densities proportional to exp(x0.99)\exp(-|x|^{0.99}). Secondly, we investigate the derandomization of Chernoff-type concentration inequalities. Chernoff-type tail bounds on sums of independent random variables have pervasive applications in theoretical computer science. Schmidt et al. (SIAM J. Discrete Math. 1995) showed that these inequalities can be established for sums of random variables with only O(log(1/δ))O(\log(1/\delta))-wise independence, for a tail probability of δ\delta. We show that their results are tight up to constant factors. These results rely on techniques from weighted approximation theory, which studies how well functions on the real line can be approximated by polynomials under various distributions. We believe that these techniques will have further applications in other areas of computer science.Comment: 22 page

    Moment-Matching Polynomials

    Full text link
    We give a new framework for proving the existence of low-degree, polynomial approximators for Boolean functions with respect to broad classes of non-product distributions. Our proofs use techniques related to the classical moment problem and deviate significantly from known Fourier-based methods, which require the underlying distribution to have some product structure. Our main application is the first polynomial-time algorithm for agnostically learning any function of a constant number of halfspaces with respect to any log-concave distribution (for any constant accuracy parameter). This result was not known even for the case of learning the intersection of two halfspaces without noise. Additionally, we show that in the "smoothed-analysis" setting, the above results hold with respect to distributions that have sub-exponential tails, a property satisfied by many natural and well-studied distributions in machine learning. Given that our algorithms can be implemented using Support Vector Machines (SVMs) with a polynomial kernel, these results give a rigorous theoretical explanation as to why many kernel methods work so well in practice

    Bayesian nonparametric multivariate convex regression

    Full text link
    In many applications, such as economics, operations research and reinforcement learning, one often needs to estimate a multivariate regression function f subject to a convexity constraint. For example, in sequential decision processes the value of a state under optimal subsequent decisions may be known to be convex or concave. We propose a new Bayesian nonparametric multivariate approach based on characterizing the unknown regression function as the max of a random collection of unknown hyperplanes. This specification induces a prior with large support in a Kullback-Leibler sense on the space of convex functions, while also leading to strong posterior consistency. Although we assume that f is defined over R^p, we show that this model has a convergence rate of log(n)^{-1} n^{-1/(d+2)} under the empirical L2 norm when f actually maps a d dimensional linear subspace to R. We design an efficient reversible jump MCMC algorithm for posterior computation and demonstrate the methods through application to value function approximation

    The Burbea-Rao and Bhattacharyya centroids

    Full text link
    We study the centroid with respect to the class of information-theoretic Burbea-Rao divergences that generalize the celebrated Jensen-Shannon divergence by measuring the non-negative Jensen difference induced by a strictly convex and differentiable function. Although those Burbea-Rao divergences are symmetric by construction, they are not metric since they fail to satisfy the triangle inequality. We first explain how a particular symmetrization of Bregman divergences called Jensen-Bregman distances yields exactly those Burbea-Rao divergences. We then proceed by defining skew Burbea-Rao divergences, and show that skew Burbea-Rao divergences amount in limit cases to compute Bregman divergences. We then prove that Burbea-Rao centroids are unique, and can be arbitrarily finely approximated by a generic iterative concave-convex optimization algorithm with guaranteed convergence property. In the second part of the paper, we consider the Bhattacharyya distance that is commonly used to measure overlapping degree of probability distributions. We show that Bhattacharyya distances on members of the same statistical exponential family amount to calculate a Burbea-Rao divergence in disguise. Thus we get an efficient algorithm for computing the Bhattacharyya centroid of a set of parametric distributions belonging to the same exponential families, improving over former specialized methods found in the literature that were limited to univariate or "diagonal" multivariate Gaussians. To illustrate the performance of our Bhattacharyya/Burbea-Rao centroid algorithm, we present experimental performance results for kk-means and hierarchical clustering methods of Gaussian mixture models.Comment: 13 page
    corecore