10 research outputs found

    Convex Multi-Task Learning by Clustering

    Get PDF
    Abstract We consider the problem of multi-task learning in which tasks belong to hidden clusters. We formulate the learning problem as a novel convex optimization problem in which linear classifiers are combinations of (a small number of) some basis. Our formulation jointly learns both the basis and the linear combination. We propose a scalable optimization algorithm for finding the optimal solution. Our new methods outperform existing stateof-the-art methods on multi-task sentiment classification tasks

    IST Austria Thesis

    Get PDF
    Traditionally machine learning has been focusing on the problem of solving a single task in isolation. While being quite well understood, this approach disregards an important aspect of human learning: when facing a new problem, humans are able to exploit knowledge acquired from previously learned tasks. Intuitively, access to several problems simultaneously or sequentially could also be advantageous for a machine learning system, especially if these tasks are closely related. Indeed, results of many empirical studies have provided justification for this intuition. However, theoretical justifications of this idea are rather limited. The focus of this thesis is to expand the understanding of potential benefits of information transfer between several related learning problems. We provide theoretical analysis for three scenarios of multi-task learning - multiple kernel learning, sequential learning and active task selection. We also provide a PAC-Bayesian perspective on lifelong learning and investigate how the task generation process influences the generalization guarantees in this scenario. In addition, we show how some of the obtained theoretical results can be used to derive principled multi-task and lifelong learning algorithms and illustrate their performance on various synthetic and real-world datasets

    Improving the Generalizability of Speech Emotion Recognition: Methods for Handling Data and Label Variability

    Full text link
    Emotion is an essential component in our interaction with others. It transmits information that helps us interpret the content of what others say. Therefore, detecting emotion from speech is an important step towards enabling machine understanding of human behaviors and intentions. Researchers have demonstrated the potential of emotion recognition in areas such as interactive systems in smart homes and mobile devices, computer games, and computational medical assistants. However, emotion communication is variable: individuals may express emotion in a manner that is uniquely their own; different speech content and environments may shape how emotion is expressed and recorded; individuals may perceive emotional messages differently. Practically, this variability is reflected in both the audio-visual data and the labels used to create speech emotion recognition (SER) systems. SER systems must be robust and generalizable to handle the variability effectively. The focus of this dissertation is on the development of speech emotion recognition systems that handle variability in emotion communications. We break the dissertation into three parts, according to the type of variability we address: (I) in the data, (II) in the labels, and (III) in both the data and the labels. Part I: The first part of this dissertation focuses on handling variability present in data. We approximate variations in environmental properties and expression styles by corpus and gender of the speakers. We find that training on multiple corpora and controlling for the variability in gender and corpus using multi-task learning result in more generalizable models, compared to the traditional single-task models that do not take corpus and gender variability into account. Another source of variability present in the recordings used in SER is the phonetic modulation of acoustics. On the other hand, phonemes also provide information about the emotion expressed in speech content. We discover that we can make more accurate predictions of emotion by explicitly considering both roles of phonemes. Part II: The second part of this dissertation addresses variability present in emotion labels, including the differences between emotion expression and perception, and the variations in emotion perception. We discover that it is beneficial to jointly model both the perception of others and how one perceives one’s own expression, compared to focusing on either one. Further, we show that the variability in emotion perception is a modelable signal and can be captured using probability distributions that describe how groups of evaluators perceive emotional messages. Part III: The last part of this dissertation presents methods that handle variability in both data and labels. We reduce the data variability due to non-emotional factors using deep metric learning and model the variability in emotion perception using soft labels. We propose a family of loss functions and show that by pairing examples that potentially vary in expression styles and lexical content and preserving the real-valued emotional similarity between them, we develop systems that generalize better across datasets and are more robust to over-training. These works demonstrate the importance of considering data and label variability in the creation of robust and generalizable emotion recognition systems. We conclude this dissertation with the following future directions: (1) the development of real-time SER systems; (2) the personalization of general SER systems.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147639/1/didizbq_1.pd

    Task Relationship Modeling in Lifelong Multitask Learning

    Get PDF
    Multitask Learning is a learning framework which explores the concept of sharing training information among multiple related tasks to improve the generalization error of each task. The benefits of multitask learning have been shown both empirically and theoretically. There are a number of fields that benefit from multitask learning such as toxicology, image annotation, compressive sensing etc. However, majority of multitask learning algorithms make a very important key assumption that all the tasks are related to each other in a similar fashion in multitask learning. The users often do not have the knowledge of which tasks are related and train all tasks together. This results in sharing of training information even among the unrelated tasks. Training unrelated tasks together can cause a negative transfer and deteriorate the performance of multitask learning. For example, consider the case of predicting in vivo toxicity of chemicals at various endpoints from the chemical structure. Toxicity at all the endpoints are not related. Since, biological networks are highly complex, it is also not possible to predetermine which endpoints are related. Training all the endpoints together may cause a negative effect on the overall performance. Therefore, it is important to establish the task relationship models in multitask learning. Multitask learning with task relationship modeling may be explored in three different settings, namely, static learning, online fixed task learning and most recent lifelong learning. The multitask learning algorithms in static setting have been present for more than a decade and there is a lot of literature in this field. However, utilization of task relationships in multitask learning framework has been studied in detail for past several years only. The literature which uses feature selection with task relationship modeling is even further limited. For the cases of online and lifelong learning, task relationship modeling becomes a challenge. In online learning, the knowledge of all the tasks is present before starting the training of the algorithms, and the samples arrive in online fashion. However, in case of lifelong multitask learning, the tasks also arrive in an online fashion. Therefore, modeling the task relationship is even a further challenge in lifelong multitask learning framework as compared to online multitask learning. The main contribution of this thesis is to propose a framework for modeling task relationships in lifelong multitask learning. The initial algorithms are preliminary studies which focus on static setting and learn the clusters of related tasks with feature selection. These algorithms enforce that all the tasks which are related select a common set of features. The later part of the thesis shifts gear to lifelong multitask learning setting. Here, we propose learning functions to represent the relationship between tasks. Learning functions is faster and computationally less expensive as opposed to the traditional manner of learning fixed sized matrices for depicting the task relationship models
    corecore