
Task Relationship Modeling in Lifelong Multitask Learning

By

Meenakshi Mishra

Submitted to the Department of Electrical Engineering & Computer Science and the
Graduate Faculty of the University of Kansas

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Committee members

Dr. Jun Huan, Chairperson

Dr. Arvin Agah

Dr. Swapan Chakrabarti

Dr. Rongqing Hui

Dr. Zhuo Wang

Date defended: July 21, 2015

The Dissertation Committee for Meenakshi Mishra certifies
that this is the approved version of the following dissertation :

Task Relationship Modeling in Lifelong Multitask Learning

Dr. Jun Huan, Chairperson

Date approved: July 21, 2015

ii

Abstract

Multitask Learning is a learning framework which explores the concept of sharing training infor-

mation among multiple related tasks to improve the generalization error of each task. The benefits

of multitask learning have been shown both empirically and theoretically. There are a number

of fields that benefit from multitask learning such as toxicology, image annotation, compressive

sensing etc. However, majority of multitask learning algorithms make a very important key as-

sumption that all the tasks are related to each other in a similar fashion in multitask learning. The

users often do not have the knowledge of which tasks are related and train all tasks together. This

results in sharing of training information even among the unrelated tasks. Training unrelated tasks

together can cause a negative transfer and deteriorate the performance of multitask learning. For

example, consider the case of predicting in vivo toxicity of chemicals at various endpoints from

the chemical structure. Toxicity at all the endpoints are not related. Since, biological networks

are highly complex, it is also not possible to predetermine which endpoints are related. Training

all the endpoints together may cause a negative effect on the overall performance. Therefore, it is

important to establish the task relationship models in multitask learning.

Multitask learning with task relationship modeling may be explored in three different settings,

namely, static learning, online fixed task learning and most recent lifelong learning. The multitask

learning algorithms in static setting have been present for more than a decade and there is a lot of

literature in this field. However, utilization of task relationships in multitask learning framework

has been studied in detail for past several years only. The literature which uses feature selection

iii

with task relationship modeling is even further limited.

For the cases of online and lifelong learning, task relationship modeling becomes a challenge.

In online learning, the knowledge of all the tasks is present before starting the training of the algo-

rithms, and the samples arrive in online fashion. However, in case of lifelong multitask learning,

the tasks also arrive in an online fashion. Therefore, modeling the task relationship is even a further

challenge in lifelong multitask learning framework as compared to online multitask learning.

The main contribution of this thesis is to propose a framework for modeling task relationships

in lifelong multitask learning. The initial algorithms are preliminary studies which focus on static

setting and learn the clusters of related tasks with feature selection. These algorithms enforce that

all the tasks which are related select a common set of features. The later part of the thesis shifts

gear to lifelong multitask learning setting. Here, we propose learning functions to represent the

relationship between tasks. Learning functions is faster and computationally less expensive as op-

posed to the traditional manner of learning fixed sized matrices for depicting the task relationship

models.

iv

Acknowledgements

I would like to take this opportunity to thank my advisor, Dr. Jun Huan for his support and guid-

ance. It is due to his suggestions and help given by him, that this dissertation was possible.

I express my gratitude towards Dr. Arvin Agah, Dr. Swapan Chakrabarti, Dr. Rongqing Hui,

and Dr. Zhuo Wang for serving on my Ph.D. committee and providing me with valuable sugges-

tions.

I also thank my friends and lab mates for their help throughout this project.

Lastly, and most importantly I express my forever gratitude to my parents Mr. and Mrs. Shiva

Kant Mishra, my husband Viraj Singh and my brother Akhilesh Mishra. I thank them for their

unconditional love, emotional support and for everything they have done for me.

v

Contents

Abstract iii

1 Introduction 1

1.1 Motivation . 2

1.1.1 Toxicology . 2

1.1.2 Bioinformatics . 3

1.1.3 Object Recognition . 3

1.1.4 Theoretical Motivation . 4

1.2 Contributions . 5

1.3 Organization of this proposal . 7

2 Literature Survey on Multitask Learning 9

2.1 Generalized Formulation of Multitask Learning 10

2.2 Static Multitask Learning . 11

2.2.1 Multitask Learning Algorithms without task relationship model 12

2.2.1.1 Without Feature Learning . 12

2.2.1.2 With Feature Learning . 14

2.2.2 Multitask Learning Algorithms with task relationship model 15

2.2.2.1 Incorporation of known task relationships 15

2.2.2.2 Identification of Task Relationship 16

2.3 Online Fixed Task Multitask Learning . 18

vi

2.4 Lifelong Multitask Learning . 20

3 Preliminary Study: Multitask Learning with Feature Selection for Groups of Related

Tasks 22

3.1 Background . 24

3.1.1 Notation Used . 24

3.1.2 Expectation Propagation . 24

3.1.3 Classification with Feature Selection . 29

3.1.4 Multitask Learning with Feature Selection 33

3.2 Methodology . 34

3.2.1 Clustering of tasks . 34

3.3 Results . 38

3.3.1 Toxicity Dataset . 39

3.3.2 MNIST dataset . 40

3.3.3 Discussion . 41

3.4 Conclusion . 42

4 Identification and Training of Task Clusters in Multitask Feature Learning with L0

Norm using Bayesian Framework 43

4.1 Related Work . 45

4.2 Methodology . 47

4.2.1 Notation Used . 48

4.2.2 Problem Formulation . 48

4.2.3 Expectation Propagation . 51

4.2.4 Summary of the Algorithm . 58

4.3 Experimental Study . 59

4.3.1 Synthetic Dataset . 61

4.3.2 Datasets Used . 63

vii

4.3.3 Computational Complexity . 66

4.4 Conclusion . 67

5 Literature Survey on Learning local models by Partitioning Input Space 69

5.1 Decision Trees . 69

5.1.1 Univariate Splitting Criteria . 70

5.1.1.1 Information Theory . 70

5.1.1.2 Gini Index . 71

5.1.2 Multivariate Splitting Criteria . 72

5.2 Regression Trees . 73

5.3 Hybrid Trees . 74

5.4 Local Models . 74

5.5 Global Formulations . 75

6 Lifelong Multitask Learning using Local Partition Models 76

6.1 Related Work . 78

6.2 Methodology . 80

6.2.1 Notation Used . 80

6.2.2 Background . 81

6.2.2.1 Partition-wise Linear Models 81

6.2.2.2 Regularized Multitask Learning 83

6.2.3 Basic Approach . 84

6.2.4 Creating Each Partition in Task Space . 92

6.2.5 Creation of Partition Tree . 95

6.3 Experimental Study . 97

6.3.1 Dataset Used . 98

6.3.2 Model Evaluation Procedure . 101

6.4 Conclusion . 103

viii

7 Learning Task Grouping using Supervised Task Space Partitioning in Lifelong Mul-

titask Learning 104

7.1 Related Work . 106

7.2 Methodology . 107

7.2.1 Notation Used . 108

7.2.2 Supervised Partitioning of the Task Space 109

7.2.2.1 Finding Single Partition Function 113

7.2.2.2 Multiregion-Partitioned Task Space 117

7.2.2.3 Predicting Regional and Task Specific Models 118

7.2.2.4 Online Partitioning of Task Space 120

7.3 Experimental Studies . 121

7.3.1 Dataset Used . 124

7.3.2 Evaluation Protocol . 125

7.3.2.1 Performance Comparison . 127

7.3.2.2 Time comparison . 128

7.3.2.3 Comparison with online k-mean partitions 128

7.3.2.4 Validation against Negative Transfer of Information 130

7.4 Conclusion . 131

8 Conclusion and Future Work 132

ix

List of Figures

3.1 Graphical representation of Classification Problem 29

3.2 Graphical representation of Sparsified Classification Problem using spike and slab

prior . 33

3.3 Graphical representation of multitask learning with sparsity enforced across features 34

3.4 Graphical representation of multitask learning with sparsity enforced across features 37

3.5 The error produced by conventional multi-task with feature selection and our method

when the number of tasks is increased . 42

4.1 The figure displays the value of the normalized weights estimated for the sythetic

data. (a) is the ground truth, (b) is the result from current MTLC0 method and (c)

is the result from Kang et al’s method. The number of groups was set to 4. In these

figures, -1 and 1 are represented by black and white colors respectively. All the

in-between values are represented by shades of gray. 62

4.2 Average time required for MTLC0 and Kang’s algorithm with varying number of

features . 67

6.1 Task Partition Model. The partitions are depicted as dashed red lines. Each parti-

tion is associated with two local linear models, one for each side of the partition.

The task model is given as the sum of all the local models associated with the task

and the task specific model. 86

x

6.2 The decrease in the overall error as a function of position in task sequence. The

red line indicates best exponential fitting curve. 100

7.1 The average time taken in seconds to train plus test each algorithm. The vertical

axis is the time in seconds on logarithmic scale and the horizontal axis represents

the dataset. The current algorithm performs orders of magnitude faster than the

batch MTL and significantly faster than other online algorithms. 129

7.2 The decrease in the overall error as a function of position in task sequence. The

red line indicates best exponential fitting curve. 131

xi

List of Tables

3.1 Comparison of performance of our algorithm with others on toxicity dataset. 40

3.2 Comparison of performance of our algorithm with others on MNIST dataset. 41

4.1 Performance on Synthetic Dataset for varying number of groups. Here, fraction of

misclassified samples are reported. G stands for the number of groups used 62

4.2 Dataset description . 65

4.3 Performance comparison of our algorithm, MTLC0, with other algorithms. The

evaluation criteria reported below is the fraction of misclassified instances. The

bold values represent the significantly best performances with p-values less than

0.01. 65

4.4 Performance comparison of our algorithm, MTLC0, with other algorithms. The

following table reports the F1-score on the tested algorithms. The bold values

represent the significantly best performances with p-values less than 0.01. 66

6.1 Summary of each of the dataset including the dimensionality. 99

6.2 The performance comparison of our method with other methods. The mean ac-

curacies are reported here. LileLopam produced accuracies closest to the Batch

MTL. 100

6.3 The average time taken in seconds to train plus predict from Batch MTL model and

the speed up achieved for other models when compared with Batch MTL along

with their standard deviations. 100

xii

7.1 Summary of each of the dataset . 123

7.2 The performance comparison of our method with other methods. The mean ac-

curacies are reported here. The Current method almost always produced best ac-

curacies. For Stock Dataset, even though ELLA has the best performance the

improvement is not statistically significant. 128

7.3 The performance comparison of our method with Batch Method. The mean accu-

racies are reported here. The performance of batch algorithms are often seen as the

maximum performance which an online algorithm may reach. Here, the current

method has a performance almost equivalent to the Batch Multitask Learning. . . 128

7.4 The performance comparison of our method versus using k-means to group the

tasks together. Results reported are average accuracies. As can be seen, our algo-

rithm has a better performance than using just k-means. 130

7.5 The time comparison of our method versus using k-means to group the tasks to-

gether. Results reported are average time in seconds. As can be seen, our algorithm

is slightly faster than using just k-means. 130

xiii

Chapter 1

Introduction

As human beings, we need to learn multiple tasks during our lifespan. The knowledge of one task

almost always helps us in training for other related tasks. For example, a basketball player learns

his major skills from playing basketball. However, the training he has in running, weight training

etc also helps him in learning basketball as well. Or a person who has knowledge about regular-

ized linear regression can more easily be trained to acquire knowledge about multitask learning as

opposed to a person who comes from a completely different background like fine arts or medicine.

Thus, it is very common in our day to day lives to apply the training we have from other tasks,

into learning the current task. This process of using past learning experience to learn the current

task makes the training both easier and faster. Same analogy can be applied to machine learning as

well. There are many tasks that might be related, and using information from training of one task

should help in training of other related tasks (142).

The concept of multitask learning in machine learning and data mining has been around for more

than a decade but the freshness of this topic is preserved. Multitask learning has shown to im-

prove the generalization performance both empirically and theoretically. However, the challenges

encountered in multitask learning are still not near their end. For example, given a set of tasks, our

brain can easily identify the correlated tasks and easily utilize the knowledge acquired by learning

1

one task into other. However for machines, it is not so easy to identify the related tasks. The ma-

chine will just learn all the tasks together and risk learning from tasks which are not related. This

scenario may be deteriorating for the performance and overall generalization error and is com-

monly known as negative transfer (73) (79) . Similar challenges make multitask learning an active

research topic even today.

1.1 Motivation

The sources of motivation for this thesis in the domain of multitask learning lies in both the appli-

cation and the theoretical side. There are numerous number of applications that may benefit from

multitask learning such as computational prediction of toxicity, bioinformatics, object recognition

etc. and each application comes with its unique set of requirements which may suggest directions

to improve upon the multitask learning framework. Motivations for multitask learning may also be

sought from theoretical limitations of the existing algorithms as well. Listed here are some of the

application and theoretical motivation for the current work.

1.1.1 Toxicology

Toxicity for long has been predicted using traditional methods such as animal testing. A fixed dose

of chemicals is fed to the experimental animal such as mouse, rat or rabbit, and the chemical’s

effect is observed on the animals over a predefined period. Often these testing methods tend to be

time consuming and expensive because a number of the animals need to be fed varying amount

of dosage for varying time to observe the effects. Not only do such methods involve a lot of

cruelty to animals, but these methods are slow and do not meet the demands of present day when

thousands of new chemicals are synthesized every year. To combat this problem, there is a need to

use alternative methods of testing toxicity of chemicals. One way would be to use computational

means to predict toxicity. For computational prediction of toxicity, we need sufficient data which

might be hard to get. Also, we know that toxicity prediction at some endpoints across some species

2

are related. Thus, toxicity prediction can find a lot of help from sharing information during the

training process, or in other words using multitask learning.

1.1.2 Bioinformatics

Over the last decade or so, there has also been a tremendous development in biological technolo-

gies. Mapping the entire genome of any species used to be considered a daunting task, but now

it can be achieved in a couple of days. There is tremendous data relating to gene expressions,

protein expressions etc and hence, computational aid to process these data are in big demand. This

plethora of information can be used for human benefits as well. For example, the risk of cancer in

each patient might be predicted using gene expression data, or the gene that plays an active role in

various forms of cancer might be identified. The challenge here, however, is that the availability of

labeled data is very limited. Thus, for any task, the number of samples become limited. One way to

combat this problem is again to group the related tasks together and use information from related

tasks as part of the training process as well (138) (113) (111) (149). For example, the prediction

of some forms of cancers might be related in the body. Or similar groups of genes might increase

the risk of multiple cancers. Thus, in these scenarios, multitask learning is useful.

1.1.3 Object Recognition

Object recognition is a wide topic in both artificial intelligence and machine learning. Object

recognition does not only mean the recognition of physical objects such as table, chair etc from

pictures, it can also mean hand written digit recognition, or recognition of animal species based

on the sound recording. Basically, where ever any kind of identification task is present, machine

learning is extremely helpful. Often potentially related tasks can be spotted in object recognition

as well. For example, in the task of identification of animal species based on their sound recording,

there can be several species whose sound characteristics are similar and aid in training as well. In

such a scenario, multitask learning will be favorable (151) (19) (93).

3

1.1.4 Theoretical Motivation

As can be seen in all the above examples, it is rather difficult to point out which tasks are related.

For example, in the case of toxicology, are all toxicity prediction task related or the tasks that

predict toxicity at similar endpoints in different species related, or the tasks that predict toxicity

in the same species related? Similarly, in the example given in bioinformatics, how do we know

which kind of cancers should be learnt together to get the maximum performance. Same argument

holds for object recognition and any other application of multitask learning. We cannot group all

the tasks together, as that can risk in deterioration of performance. We have to find the related tasks.

Another question to ask ourselves would be, how the task relatedness is defined? In machine

learning when we talk about task relatedness, we usually talk about closeness of the parameters

that are trained for each task. This proximity can either be measured in terms of physical distance

between the parameters, such as euclidean space or in underlying latent space. Would these met-

ric be appropriate for what we humans define as related tasks and force such information be shared?

The third daunting question that comes up after reading all the related material, is that, if all

the information we have about the tasks is being appropriately represented to be fully utilized for

training? For example, if we know the task structure beforehand, do we fully utilize that structure

in training. As an instance, suppose that the tasks have hierarchical structure. There has been

considerable work done to utilize this kind of structure and train the higher order nodes from sam-

ples of the leaf node. However, when using feature selection, how do we frame the relationships

between leaf nodes and their ancestors? Will it be more appropriate to enforce leaf nodes to select

a subset of features, or is it appropriate to enforce all tasks to select a common set of features?

Another major question that is frequently encountered is, are all the tasks known beforehand.

There are multiple applications where new tasks may be added during the training process. For

instance, in the case of toxicity prediction, the data which is available for training may only consist

4

of labels for prediction of toxicity related to some endpoints. As the training progresses, more and

more data becomes available for other endpoints as well. Similarly, in the case of image anno-

tation, the number of objects that need to be identified by the learning agent may increase as the

learning agent trains on increasing number of picture. In each of the cases, new tasks are encoun-

tered during the training process. In such cases, is it possible to use the existing knowledge learnt

from previous tasks to learn the new tasks as well and use the knowledge from the new task to

update the previously learnt tasks as well? Or would it be beneficial to retrain the entire learning

agent each time a new task is encountered?

Thus, there are still many open-ended questions that remains to be explored in multitask learn-

ing which make the topic of multitask learning an interesting area to work on. This thesis aims at

delving further into these areas and find some of these answers. We study task relationship mod-

eling and its representation in the case of lifelong multitask learning where the tasks arrive in an

online fashion.

1.2 Contributions

The key contribution of this thesis is the idea of using functions to represent the task relationship

models in lifelong multitask learning and to learn both the task relationships and task parame-

ters using supervised learning. Using functions to represent task relationships particularly benefits

lifelong multitask learning because the functions learnt may be used to transfer knowledge from

existing knowledge pool to the new incoming knowledge, and incorporate the new knowledge into

the existing knowledge pool. Using functions also help us formulate the problem of task relation-

ship modeling in a supervised framework. In this thesis, we first present all our preliminary studies

and contributions, and lastly, present our algorithm for learning task relationships in lifelong set-

ting.

5

As part of our preliminary work, we studied the task relationship modeling in static multitask

learning first. Our main contribution in the static multitask learning is to develop an algorithm that

first identifies the related tasks together based on the features shared among tasks and then attempt

to train only the related tasks together. There has been some work done in the realm of training

heterogenous tasks together as well. However, this algorithm uses a common set of features se-

lected as a source of information shared amongst the related tasks, instead of the relationships that

might exist amongst the parameters of the model. It is more intuitive that the tasks which are re-

lated might depend on the same factors. In this framework, the prior is designed using a mixture of

gaussians over the probabilities of the features to be selected and an spike and slab prior to select

the features. The mixture of gaussian prior clusters together all the tasks with similar probabilities

of similar features to be selected. Then, the tasks within each group are trained together to further

induce selection of similar features across tasks within the same group. Although, this algorithm

does produce good results on toxicity dataset, there is a major drawback when using this algorithm.

This algorithm requires that the number of tasks be large so that the clustering process is aided with

larger number of samples.

It is difficult to find scenarios where the number of tasks might be large. Moreover, there are

numerous applications where the number of tasks are small but still many are unrelated to others.

Thus, the grouping of the tasks may still be required despite the number of tasks being relatively

small. The second algorithm presented in this thesis is another multitask learning algorithm in

static setting which also groups the tasks together and assumes that the similar tasks depend on

similar features. In this algorithm, I use the bayesian equivalent of the L0 norm, spike and slab

prior, for feature selection. For grouping the tasks, I use categorical distribution rather than mix-

ture of gaussian distribution, which has a similar form with spike and slab prior and thus makes

approximation of the posterior easier. Therefore, this algorithm is efficient for even a small number

of task, and is more stable and converges faster.

6

The previous two algorithms are related to static multitask learning setting. The next two al-

gorithms we developed are in the realm of lifelong multitask learning. In these algorithms, we

propose the idea of using linear functions to partition the task space to cluster the tasks and learn

the task relationships. More specifically, we use a supervised learning approach to partition the

task space recursively using linear partition function to identify the related tasks. The advantage of

learning a series of linear partition functions is that when a new task arrives, these functions easily

transfer knowledge from the previously learnt tasks and the new task easily finds and learns from

the set of tasks which are related. Another advantage of learning linear functions is that learning

real valued parameters for a straight line are easier than learning binary value indicators or fixed

sized matrices to indicate group membership of the tasks in terms of optimization solutions.

The first of these algorithms provide a framework to partition the task space hierarchically, and

provide a global framework to use the learnt hierarchical structure to train the tasks in an lifelong

learning setting. In the second algorithm, we provide a single framework to learn both the task

partitions and the task parameters. In this algorithm, we also assume that similar tasks depend on

similar features and provide a method for feature selection again in lifelong learning.

1.3 Organization of this proposal

This thesis initially covers a brief literature survey in the field of multitask learning. Following

which we present the algorithms we developed for static multitask learning setting. Both of these

algorithms are for learning task clustering with feature selection using L0 norm. The first algorithm

uses mixture of gaussian prior while the second algorithm uses categorical distribution for task

clustering. Then, the gear of this thesis is shifted towards lifelong learning. A brief survey of the

existing input space partitioning methods which learn a local model in each region is provided.

We then use the input space partitioning methods in multitask learning to group the related tasks

in lifelong learning setting and provide the description of two algorithms that we developed in this

7

setting. The thesis is concluded with the future work on which I would like to work on to extend

the ideas presented in this thesis.

8

Chapter 2

Literature Survey on Multitask Learning

Multi-task learning has been long known to improve the generalization performance significantly

(20) (142). When there is not enough number of samples to train individual task, it is intuitive to

train the related tasks together. In this case information from each task can be used to influence the

training of other tasks. The benefits of multitask learning have been shown both theoretically (95)

(135) and in practice for real world applications (112) (148) (56) (84) (24).

There are multiple applications of multitask learning which range from prediction of protein-

chemical interactions, image annotations, handwritten digit recognition, document and text cat-

egorization to robotics and natural language processing. It is fairly clear how these applications

are formalized as multitask learning. One of the many interesting applications of multitask learn-

ing is in compressive sensing (112)(71) (147) (153). Although machine learning and compressive

sensing may seem to be completely different realms, the fundamental principle behind finding the

solution for both the fields is same. In both machine learning and compressive sensing, one aims

to find the solution of underdetermined problem where the number of variables are greater than

the number of equations. In machine learning, multitask learning helps in transferring knowledge

between the related tasks and constrain the underdetermined problem. Therefore, if there are mul-

tiple related signals or images that are compressed, these images or signals can be uncompressed

9

together using multitask learning framework. Multitask learning also finds its way in many indus-

trial application such as recommendation systems. The vast and diverse applications of multitask

learning make the topic very interesting and popular among researchers.

There are multiple ways in which the broad literature of multitask learning may be organized.

For example, the literature can be classified into methods that use feature selection versus methods

that don’t, or bayesian versus regularized method, or parametric versus non-parametric approaches

etc. Here, our discussion will focus on static multitask literature versus online fixed task and life-

long multitask learning. Let us first focus on the generalized formulation of multitask learning,

and then we will focus on the vast literature on static multitask learning followed by the work done

in online fixed task multitask learning and lifelong multitask learning.

2.1 Generalized Formulation of Multitask Learning

The earlier days of multitask learning were highlighted by ways to modify neural networks to in-

corporate information from multiple tasks (20), (9). Collobert and Weston (29) apply deep neural

networks to learn features common to all tasks in Natural Language Processing using deep neural

networks. With time, the multitask learning algorithms have taken a shift towards regularization

based approaches.

Most multitask learning algorithms now follow a common structure. Consider the case of learning

a group of tasks from the dataset Z, which consists of the input matrix X t and output vectors yt , for

all t = 1,2, ...T . Here, T are the total number of tasks to be trained. Then, our objective is to find

ft(X t), such as to minimize the expected loss function between yt and ft(X t) where ft belongs to a

common set S for all t.

min
ft∈S

1
T

T

∑
t=1

E(l(ft(X t),yt) (2.1)

10

Solving the above equation would be the same as learning the tasks independently, which may

not be always beneficial. For example, if the number of samples are very small compared to the

number of features for each of the tasks, it is not possible to learn the tasks independently. In these

cases, additional information may be learnt from related tasks. The most common approach to

share some information amongst the tasks is to include a regularization term in the above equation

which is a constraint provided to connect the tasks together. In bayesian approach, a common

prior is usually used to connect the tasks together, which can usually be proven to be same as the

regularization function. Thus, a generalized model for multitask learning can be given as

min
ft∈S

1
T

T

∑
t=1

E(l(ft(X t),yt)+λΘ(f) (2.2)

The relationship between tasks can be expressed using different approaches by changing the

Θ(f). The value of Θ(f) is usually selected based on the prior information available about the

relationship between the tasks, additional bias that needs to be imposed on the model and also the

compatibility of Θ(f) with the choice of set S and with the loss function used. The choice of Θ(f)

is the major variance among various multitask learning algorithms. There are multiple ways in

which the existing multitask learning algorithms might be studied. One such way is to divide them

into algorithms that utilize task relationship models versus those which do not in static, online and

lifelong learning settings.

2.2 Static Multitask Learning

Literature related to static multitask learning or batch multitask learning has been present for more

than a decade. In static multitask learning, it is assumed that all the samples related to all the

task are provided beforehand. There is a vast literature present for static multitask learning and

it is not possible to review the entire literature in this thesis. However, we provide a summary of

the important directions that the literature related to static multitask learning has been in. Mainly,

the literature started with the assumption that all the tasks are related with each other and did not

11

assume any particular task relationship model. Later, researchers started to loosen this assumption

and started using and learning task relationship models to prevent negative transfer of incorpora-

tion. Here, we first discuss the multitask learning algorithms which do not use task relationship

models followed by a brief survey of various methods to incorporate task relationships in multitask

learning.

2.2.1 Multitask Learning Algorithms without task relationship model

There are many algorithms which do not make any assumption about the structure of task relation-

ships. These algorithms either incorporate feature learning, or do not incorporate feature learning.

2.2.1.1 Without Feature Learning

There are numerous implementations of multitask learning algorithms which make use of all the

features. One kind of such algorithm assumes that the tasks are related by the proximity of the

parameters chosen for each task. These kinds of algorithm impose that the parameters remain

close together by using an additional regularization term consisting of norm of the weights like the

L2 norm of the difference between the parameters. Let us assume that the set S belongs to a family

of linear functions given by the dot product of the feature vector Xt,i and the parameter vector wt .

Then, the problem of training multiple tasks reduces to

min
wt

1
T

T

∑
t=1

Nt

∑
i=1

l(< wt ,Xt,i >,yt)+λ

T

∑
t=1
||wt−

1
T

T

∑
w=1

ws||2 (2.3)

Often in the above formulation, L2 regularization over each wt is also added for further minimizing

the model variance in case of underdetermined problems. Thus, the model parameters are given by

min
wt

1
T

T

∑
t=1

Nt

∑
i=1

l(< wt ,Xt,i >,yt)+λ1

T

∑
t=1
||wt−

1
T

T

∑
t=1

ws||2 +λ2

T

∑
t=1
‖wt‖2 (2.4)

in (43), the authors show that the above formulation is equivalent to assuming that wt = wo + vt

where wt are the task parameters of individual task. Here, wt is decomposed into two parts, wo

12

which is common for all the tasks and a task specific vector vt . In this case, if we consider hinge

loss, the above formulation is same as

min
wo,vt

1
T

T

∑
t=1

Nt

∑
i=1

l(< wt ,Xt,i >,yt)+ρ1

T

∑
t=1
‖vt‖2 +ρ2‖w0‖2 (2.5)

Alternatively, the problem can be formulated as following.

min
wt

1
T

T

∑
t=1

Nt

∑
i=1

l(< wt ,Xt,i >,yt)+λ tr(W T
ΩW) (2.6)

The formulation mentioned above is formulated as an regularized approach. However, using a

common gaussian prior over all the parameters will give the same results. As we can see, the

weight vectors are forced to remain close to the average of the weight vectors. Examples of these

kind of algorithms can be seen in (43) (9) (42) (161) (88) (74) (106) (161). Using this approach,

often there might be some outlier tasks that might cause the performance of all the tasks to go

down. Therefore, Shipeng Yu et al (162) used t-processes for developing a robust multitask learn-

ing algorithm. T-distribution has a heavier tail than gaussian making it more forgiving for outliers

than gaussian distribution.

Other implementation of multitask learning are by using the assumption that each task is a lin-

ear combination of common set of basis functions that need to be learned (20) (31) (118).

There are multiple areas in machine learning which are closely linked with multitask learning.

For example, multi-label learning problems can easily be formulated as multitask learning where

each task is assigned for predicting each label. However, multi-label learning problems only en-

compass classification tasks where as multitask learning can have both classification and regression

tasks. Similarly, multi-class learning problems may be framed as both multi-label problems and

multitask learning problem. Thus, it is often considered that multi-label and multi-class problems

are a subset of multitask learning problems. Similarly, multitask learning can be viewed as a spe-

13

cial case of transfer learning where knowledge is transferred in the same domain across different

tasks.

In (33), the author, Hal Daume III pointed out the relationship between domain transfer and mul-

titask learning. He developed a hierarchical bayesian framework which is similar for both domain

transfer and multitask learning. The only difference being that the parameters are shared in the

case of domain transfer and the covariance matrix of the features is shared in the case of multitask

learning. There has also been some work done on learning multiple tasks across different domains

as in (55). Han et al. use a latent probit model to learn the domain transformations as well as the

multiple tasks.

2.2.1.2 With Feature Learning

The most common formulation used for feature learning in multitask learning algorithms is the use

of L1 norm across the parameters of each task to ensure a common set of features are selected for

the related tasks (145) (90). This formulation may be similar to group lasso where L2 norm is used

to keep the parameters close together while L1 norm is used for feature selection(94). (89) pro-

pose the use of coordinate descent to optimize such formulation. (169) and (63) observe a general

settings of using L1,∞ and connect these models with probabilistic models. Then, they use jefferys

prior to deal with outlier tasks as well. Other methods to encourage sparsity is the use of L0 norm

or the spike and slab prior as in the case of (83). Some of these algorithms are formulated as reg-

ularization methods (5) (159) , while others use matrix-variate approach (4). Both the approaches

are often interchangeable.

Other approaches of multitask learning algorithms with feature learning are algorithms that learn

a set of basis vectors for all the tasks as in (165) (141). Alternatively, the common latent struc-

ture can also be found using spectral decomposition methods as (7). Or, (85) use a hierarchical

bayesian approach to model the feature correlation by using gamma distribution as a prior to the

14

precision matrix of the prior of each task.

Basically, multitask learning algorithms assume that all the tasks are related to each other in the

same way. However, for most applications, we may not have a domain expert’s opinion which can

help us decide which tasks are related and which are not. Thus, there is a requirement to learn the

task relationships, and the above mentioned algorithms do not deal with task relationship learning.

2.2.2 Multitask Learning Algorithms with task relationship model

The other group of multitask learning algorithms are algorithms which relax the assumption that

all tasks are related to one another in similar way. These algorithms either utilize the known task

relationships that exist among the task, or they try to learn the structure of the task relationships.

2.2.2.1 Incorporation of known task relationships

In most multi-task learning algorithms, it is often assumed that all the tasks are related with each

other. However, this is usually not the case, as there might only be some tasks that are closely

related. Training with tasks that are not related with each other can further deteriorate the perfor-

mance (9). There are some applications where we know the task relationships beforehand and this

prior knowledge can be used in the model. For example, the task relationships may either be given

as an undirected graphs or as a hierarchical tree (directed acyclic graph). If the graph structure is

known, this structure can easily be encoded in form of a positive semidefinite matrix which can

easily be incorporated in equation 2.6.

The current hierarchical multitask algorithms either bound the label structure in the regulariza-

tion term to ensure the leaf node parameters are close to their ancestors (18) (23) (35), or use a

cascading approach where they train individual classifier, and then try to incorporate the structure

information (34) (40) (76) (160) (91). (102) aim at collecting expert traces to acquire the task

network and use that for training. However, these algorithms also do not use feature selection, and

the work done which incorporates feature learning with incorporating known task relationships is

15

limited.

2.2.2.2 Identification of Task Relationship

As discussed in section 2.1, most multitask learning algorithms assume that all the tasks are related

either physically or in latent space in the same way, which may not be true resulting in performance

degradation. If the task structure is known, then that structure can be applied. However, there are

many cases where the task structure is not known. A common scenario for such a problem arises

in toxicity endpoint predictions. Suppose, we have a dataset consisting of chemical structures and

the endpoints for which these chemicals are toxic. Here, the objective is to predict the toxicity

of the chemical at each endpoint. This problem can be formulated as a multitask problem where

predicting toxicity at each endpoint can be treated as one task. In this case, it can be beneficial to

assume that not all tasks are related to each other. If we knew which tasks are related, we could

select only those tasks manually for traditional multitask learning and benefit from it. However,

we may or may not have this prior knowledge.

A similar scenario can arise in the prediction of occurrence of different types of cancers given

the microarray data. Again, there are cancers that might result from mutations in similar genes

while others can be caused by mutation in different genes. We know that some of these tasks can

benefit when they are trained together, but training all the tasks together might not be beneficial.

However, similar to the case of toxicity prediction, we do not have a priori knowledge of which

tasks will benefit the most from training together.

Jalali et al, (69) deal with this problem by not enforcing that all parameters selected should be

shared across all tasks. That is, only the parameters that help when shared across all tasks are

shared. Rest are trained individually, so as to keep the model from having a worse generalization

performance than single task learning. They achieve this by breaking their parameter matrix W

as sum of two matrices S and B. Their regularizer function is a weighted some of L1,1 norm of S

16

and L1,2 norm of B. Thus, part S is sparsified individually, while S undergoes a group sparsifica-

tion resulting selection of vectors that are shared across all tasks. Similarly, in (156), the authors

dirichlet prior to encode higher correlation among some tasks as opposed to others. (15), (167)

learn an intertask dependency matrix to learn task relationships in a gaussian process framework.

However, these papers only attempts at loosening the definition of the task relatedness, but it does

not identifies the groups of related tasks and binds them together. There is still a single group of

tasks in these papers.

Recently, there has also been some development in the identification of the tasks that will ben-

efit from training with each other, and only training those tasks together. A common approach for

this is clustering of the tasks based on the closeness of the physical parameter space (68). Jacob et

al. utilized the covariance of the tasks to create the clusters. Another approach is to use the simi-

larity of the latent space of the parameters of each task to determine the closely related tasks (171).

(70) develop a convex formulation using Lp,q norm regularizer to group the related tasks together.

(170) group the tasks after assuming that each feature can have different cluster structure. They

assume that the parameters that need to be learnt in training process can be split into W =U +V .

There are other algorithms that use this decomposition, but Zhong et al have a regularization term

on U forcing the value of U to be close for each feature, while a regularizer in V penalizes the dif-

ference of each W from U . This formulation is used to cluster the feature together in cases where

feature selection is not required. Another way to identify the task relationships are by representing

the parameters of each task as the linear combination of a set of basis vectors where some basis

may be common between the tasks while are individually characterize the specific task (79). The

above-mentioned algorithms do not use feature selection. There is limited literature that deals with

identification of related tasks and feature learning simultaneously. This thesis will briefly deal with

this area of multitask learning as well. However, the main topic in this thesis is lifelong multitask

learning, which can be viewed as an extension of online multitask learning. Therefore, let us go

over the literature related to online multitask learning.

17

2.3 Online Fixed Task Multitask Learning

Online multitask learning has gained recent attention of the researchers because it is a useful frame-

work when data is being streamed at high speed, as well as when the quantity of data is so large

that it is not possible to load the entire data in the memory. With the rapid rise in the interest in

big data, online methods in machine learning in general have gained a lot of popularity. In the

realm of multitask learning, the major assumption made is that the number of tasks are finite and

fixed beforehand. The major advances in online multitask learning algorithms are similar to that of

static multitask learning. Although the literature in online multitask learning is not vast, there have

been studies in incorporating feature selection and task structure relationships in online multitask

learning as well.

Online multitask learning was initially proposed by Dekel et al (36). Dekel et al. assume that

the data arrives one sample at a time. For each sample that arrives, the algorithm first makes the

prediction for each of the t tasks, and then obtains labels for all the tasks and learns from them.

The authors provided the general framework for the online multitask learning and proposed sev-

eral algorithms based on the same framework. The authors state that the online multitask learning

algorithms update the weights according to the equation

wt,i+1 = wt,i + τt,ixt,iyt,i (2.7)

where wt,i+1 is the weight update of tth task at ith iteration. The weights are updated according

to the error estimated on incoming sample xt,i and its label yt,i. Different choices of τt,i result in

different update mechanisms and different algorithms. Most of the online multitask learning al-

gorithms fit in this framework because the formulation indicates that the weight vector is updated

according to some function times the incoming sample. Usually, the use of stochastic gradient

descent or minimization of regret bounds leads to this framework easily.

18

Online multitask learning can also be divided into two categories broadly, algorithms which do

not use task relationship models versus the algorithms that do consider the task relationship mod-

els. There are multiple models which do not consider task relationships (36), (21), (155), (86).

(21) is a perceptron based algorithm which adapts to the conditions of access of limited memory,

whereas in (155), the authors develop an ensemble based model where a series of forecasts need to

be predicted and the true values are not available for all the data points. In this paper, the authors

assume that the parameters for each task wt are given by wt = w0 + vt , where w0 is the global

model for all the tasks and vt are the task specific parameters. Formulation used in (87) is similar

to that of (43) in static multitask learning. Li et al in (86) build an online multitask learning model

for regression problems. This algorithm is unique in the sense it regularizes the mahalabonis dis-

tance between each update of the weight vectors and the difference in error at each iteration for

regression problems. The authors assume that for each update of the tasks, the error structures

hold significant information pertaining to the tasks as well. (92) propose an interesting aspect of

online multitask learning problems where the next course of action is predicted given the current

actions and users responses related to the current action. The set from which the next course of

action needs to be predicted is also constraint. In (158), (157), (2) and (12) the authors do feature

selection in online multitask learning as well.

There are many algorithms which model the task relationship in online multitask learning set-

ting. These algorithms often used a fixed sized matrix which is assumed to be known a priori to

represent the task relationships. The examples of these algorithms are (140), (139), (22). Both

(140) and (139) use a similar online multitask learning formulation and use it for different appli-

cations, namely spelling correction of a query and tracing activities of different people. Cavallanti

et al in (22) develop a perceptron based algorithm using fixed task relationship matrix. There are

multiple algorithms which aim at learning the task relationship matrix as well such as (125). In

this algorithm, the authors penalize the updates in both the task relationship matrix and the task

parameters.

19

There are other ways to encode the task structure as well. For example, (3) and (124) assume

all tasks to be related in a lower dimensional space and learn a set basis and their coefficients to

learn each task. When the coefficients are sparse, the resulting algorithm assumes the task have

overlapping cluster structure. Similarly, in (1), the authors assume that the predictions for each

task is given by a small set of experts. (130) build a coactive model which gets its feedback from

human beings to learn a structured output.

As can be seen, there is not much existing literature for online multitask methods. The next cat-

egory of multitask learning algorithms is lifelong multitask learning. This topic is fairly new and

the literature related to lifelong multitask learning is extremely limited.

2.4 Lifelong Multitask Learning

Lifelong multitask learning is the process of learning unseen tasks based on the tasks that have

previously been learnt. In simple words, lifelong multitask learning is online multitask learning

in terms of tasks. The early work of lifelong multitask learning was proposed by (142; 19; 134;

131; 133) and uses neural networks for their algorithm design. Recently, lifelong learning has been

studied in detail by Eaton et al in (41). In this study, Eaton et al proposed an algorithm, named

ELLA, which uses the knowledge gained from the existing task to learn from the new oncoming

task. The authors follow a model similar to (79) and learn a common set of basis for all the tasks

and learn a sparse set of coefficients for each task. The sparsity in the coefficients of the basis

ensures that all the tasks are not forced to be related in the same way and can deviate from each

other based on the basis vectors the tasks depends on. The authors assume that the data arrives

in batches with a set of samples from each task incrementally. The authors also extend their for-

mulation for active task selection (122), (123) and reinforcement learning (3). The authors also

introduce a faster solution of ELLA by using spectral value decomposition of the basis vectors

20

which improves the speed while compensating on the accuracy of ELLA (124).

Another study in lifelong multitask learning was done by Pentina et al in (109). The paper deals

with the study the Bayesian PAC bounds in lifelong multitask setting. The authors propose that in

these settings, the prior also needs to be learnt along with the posterior of each task.

In this thesis, we wish to focus our attention on multitask models that learn the task relation-

ships. The simplest kind of structure that can be learnt is task clustering. Therefore, in this thesis,

we develop a couple of algorithms which learn the task clustering as well. These algorithms ensure

that the tasks in same clusters depend on the same features. Then, we shift our focus to lifelong

multitask learning framework and we develop couple of algorithms to cluster the tasks in lifelong

multitask learning setting.

21

Chapter 3

Preliminary Study: Multitask Learning

with Feature Selection for Groups of

Related Tasks

Multi-task learning has been long known to improve the generalization performance significantly

(20) (142). When there is not enough number of samples to train individual task, it is intuitive to

train the related tasks together. In this case, information from each task can be used to influence the

training of other tasks. The benefits of multitask learning have been shown both theoretically (95)

and in practice for real world applications (112) (148). However, the key assumption here is that

all the tasks that are trained simultaneously are related, which is not always true. In many cases,

sharing all the tasks together can worsen the generalization error. In these conditions, it might be

beneficial to group only the relevant tasks together.

Also, most of the current multi-task learning algorithms assume that the function parameters for

each task are close to each other by using either regularization methods (5) (159) or multivariate-

matrix penalty (4) (161) methods (which are often reduced to regularization methods). But, when

the number of samples are very less than the number of features, these methods do not perform as

22

well as their counterpart bayesian approaches. But, one problem of traditional bayesian approach

is that feature selection in bayesian framework is a difficult task. And, in most cases where the

number of features are very large, it is quite unlikely that the given task will depend on all the

features. Thus, it is helpful to incorporate some kind of feature selection framework. Extending

this argument for the case of multitask learning, it can be the case that the multiple tasks are only

related as they depend on the same set of features which need to be selected

Bayesian MTL is a new direction of MTL research. Daniel Hernandez-Lobato et al (61) pro-

posed a Bayesian multitask learning algorithm which utilizes sparsity encouraging priori, coupled

with the assumption that all the tasks use the same subset of features. The authors propose the

use of spike and slab prior to incorporate feature selection in their algorithm. Then, the authors

train the functional parameters of each individual task based on the common subset of features that

are selected for all the tasks. The authors use expectation propagation to solve for the resulting

posterior distribution.

We study a new extension of Bayesian Multi Task Learning. In our work, we assume that not

all tasks are related to each other. Instead, there are a certain number of groups that can be formed

by grouping the related tasks. Thus, the primary objective of the current work is to simultaneously

recognize the closely related tasks and train only these tasks together. We achieve this by using

a mixture of gaussian prior over the probabilities of selecting each feature. This prior helps us

to select the closely related tasks group individually. Like (61), we also assume that the related

tasks in the same group share the same subset of features. However, we relax this assumption by

allowing small variations of the features selected within the same group of tasks as well.

23

3.1 Background

Before providing a description of the algorithms developed, I would first like to review some back-

ground information needed. In this shatter, we will first describe the notation used in rest of the

document, then in Section 3.1.2, we will describe the expectation propagation algorithm as devel-

oped by Minka(97) (96). In section 3.1.3, we will discuss about the use of expectation propagation

in classification with feature selection . Lastly, in section 3.1.4, we will talk about extending the

classification algorithm to multi-task framework.

3.1.1 Notation Used

We denote the real numbers by R. All the matrices are denoted by bold face capital letter, and

all the vectors are denoted by either the arrow symbol on top of the letter or by lower case bold

letters. The scalars are denoted by lower small case letter. The symbol X :,i denotes the ith column

of matrix X , and the symbol X i,: denotes the ith row of matrix X . The given dataset Z consists of

the input matrices Xk, where k ∈ {1...t} given t number of tasks. Also, Xk ∈Rnk×d where nk is the

number of samples in each task and d is the number of dimensions of the input. It is not necessary

in this algorithm for all tasks to have same number of samples, however, for simplicity purposes,

we will just assume each task has n samples. We can easily extend this algorithm to the case when

the number of samples are not the same. But, we do assume that the initial input space for each

of the task is the same. The given dataset Z also consists of the output vector yk ∈ {−1,1} which

describes the output for each of the n samples for the kth task.

3.1.2 Expectation Propagation

Before we begin to describe our algorithm, I would like to begin with the case of single task

learning, and first discuss the use of expectation propagation for the estimation of the posterior

24

distribution by approximating the posterior distribution as a Gaussian. This work was primarily

done by Thomas Minka (97) (96).

Given, the dataset Z consisting of input matrix X ∈ Rn×d and the output vector~y ∈ {1,−1}. Here,

we are will describe this method only for linear classification models, even though it is easy to ex-

tend expectation propagation into kernel space. Thus, let us assume that the prediction for unknown

input vector~x can be given by the model y = sign(< ~w,~x >), where ~w is the d dimensional param-

eter vector that is needed to be estimated. In order to estimate w, P(w|Z) needs to be estimated first.

P(w|Z) = P(Z|w)P(w)
P(Z)

(3.1)

P(Z|w) is the likelihood function of the dataset and can be written as the product of loss functions

for each sample, and P(w) is the prior over w. For traditional expectation propagation based clas-

sification model, the prior is set to be a standard normal distribution given by N (w|0, I), where I

is the identity matrix. P(Z) is just a normalizing constant. Now,

P(w|Z) =
n

∏
i=1

l(w,X i,:,yi) N (w|0, I) (3.2)

Here, l(w,X i,:,y) is the loss function that is used for a given model. Let us assume the use of

cumulative Gaussian φ(yX i,:w) for loss function, as we use this loss function in the method we

developed. Also, since through out the algorithm, X is always multiplied by y, we will omit the

occurrence of y in the future, and assume that X is always multiplied by y. Estimation of exact

distribution of equation 3.2 is highly computationally expensive and can be practically infeasible.

Thus, expectation propagation can be used to approximate equation 3.2 as a normal distribution.

Let the posterior distribution be denoted by Q. Thus,

Q = N (w|µ,Σ)

25

The objective now becomes to estimate the parameters µ and Σ. In order to approximate equation

3.2 in form of Q, Minka first considers equation 3.2 to be formed by product of n+1 terms ti where

i ∈ {1...n+1}. Each term ti can be approximated by a Gaussian t̃i = N (w|mi,si). Thus,

Q =
n+1

∏
i=1

t̃i = N (w|µ,Σ)

The whole idea of expectation propagation is to remove each t̃i term one at a time and replace it

with the exact ti term, and approximate the new posterior as a gaussian. Then, t̃i is re-estimated.

This entire process is repeated until convergence. The summary of this algorithm is represented by

the following equations.

Q\i = Qold/t̃i

Qnew ≈ Q\i× ti

t̃i = Qnew/Qold (3.3)

The first step to solve is to initialize the posterior Q by standard normal distribution, and the term

approximations t̃i with infinite variance Gaussian. The reason for initial choice of Q to be standard

normal is that this is the prior which is considered for this algorithm, and the reason for t̃i to be flat

is to have a non-informative starting point for the term approximations.

The next step is to divide the t̃i from the posterior Q. Since, both Q and t̃i are normal distribu-

tion, dividing t̃i from Q will be another Gaussian. Thus,

Q\i = N (w|µ\i,Σ\i)

26

where,

Σ
\i = (Σ−1

old− si
−1)−1

µ
\i = Σ

\i(µT
oldΣ

−1
old−mi

T si
−1) (3.4)

Now, it is required to estimate the new posterior by estimating p̂ = tiQ\i as a Gaussian. Thus, the

Kullback-Leiber divergence between Qnew and tiQ\i is minimized to estimate the parameters µnew

and Σnew. Since, Q comprises of product of members from exponential families, Kullback-Leiber

divergence can be minimized by simply equating the expected values of the two distribution.

EQnew(w) = Ep̂(w)

EQnew(wwT) = Ep̂(wT w) (3.5)

If

K(µ\i,Σ\i) =

ˆ
w

tiQ\idw (3.6)

Then, it can be shown that

Ep̂(w) = µ
\i +Σ

\i5
µ\i logK(µ\i,Σ\i)

Ep̂(wwT)−Ep̂(w)Ep̂(w)T = Σ
\i−Σ

\i(5
µ\i5

T
µ\i

−25
Σ
\i logK(µ\i,Σ\i))Σ\i (3.7)

Solving 3.7, the values of µnew and Σnew are estimated as

µ
new = µold +ΣoldαiXT

i,:

Σ
new = Σold− (ΣoldXT

i,:)(
αiX i,:µ

new

X i,:ΣoldXT
i,:
)(ΣoldXT

i,:)
T (3.8)

27

where,

αi =
1√

X i,:ΣoldXT
i,:

N (k;0,1)
φ(k)

k =
µT

oldXT
i,:√

X i,:ΣoldXT
i,:

Last, the term approximations need to be updated again, which can be done by just dividing

Qnew by Qold . Thus,

t̃i = N (w|mi,si)

where,

si = (Σ−1
new−Σ

−1
old)
−1

mi = si(µ
T
newΣ

−1
new−µ

T
oldΣ

−1
old) (3.9)

This process has to be repeated for each sample ∀i = 1...n, and then repeated till convergence in

parameter is acquired. It is not required to deal with the n+ 1th term, the prior, because the pos-

terior can be simply initialized as the prior. Since, the prior is fixed and has same form as the

approximate posterior, it does not need to be updated and approximated.

Also, it is not entirely necessary to consider the full covariance matrix. In our observations, we

noticed that we do not lose much by considering each feature to be independent on other and con-

sider the covariance matrix to be only diagonal. But by doing that, we achieve much more stability

in our algorithm because instead of dealing with matrix inverses, we can just find the reciprocal of

the diagonal terms. The algorithm is also a little faster. In this case, the posterior becomes

Q =
d

∏
j=1

N (w j|µ j,σ j)

28

Figure 3.1: Graphical representation of Classification Problem

The other equations remain basically the same, except all the matrix multiplication reduce to el-

ement wise multiplication of the vectors and taking inverse of covariance matrix is equivalent to

taking reciprocal of each diagonal element. A graphical representation of classification, when as-

suming each parameter to be independent of other is shown in Figure 3.1.

3.1.3 Classification with Feature Selection

There are a multiple ways, feature selection can be induced in a given algorithm. Using a laplace

prior is one way, but often leads to stability issues during optimization. Another way is to use spike

and slab prior. Daniel Hernandez-Lobato used spike and slab prior in the expectation propagation

framework described in section 3.1.2 to induce feature selection (59) (62). So first, we will review

the work of Daniel Hernadez-Lobato in using spike and slab prior in the expectation framework to

do feature selection in single task learning (59) (62). The spike and slab prior can be represented

as

P(w|γ) =
d

∏
j=1

N (w j|0,σ2
1)

γ jN (w j|0,σ2
0)

1−γ j (3.10)

where, γ j is an induced variable which can only take the values 0 and 1. The value of σ1 is a

larger value (Hernandez-Lobato and we used 1), and the value of σ0 zero. If the value of γ j is

one, that feature is multiplied by a gaussian with variance 1 as a prior, making this feature have

higher probability to be selected. If the value of γ j is 0, this feature is multiplied by a gaussian

with zero variance, making the chances of selecting this feature very feeble. The prior over gamma

29

is a bernoulli distribution with expected value of 0.5, so that each feature has an equal chances of

getting selected to start with.

P(γ) =
d

∏
j=1

ρ
γ j
0 (1−ρ0)

1−γ j (3.11)

The value of ρ0 is 0.5.

Now, it is required to infer

P(γ,w|Z) = P(Z|w)P(w|γ)P(γ)
P(Z)

∝ (
n

∏
i=1

l(w,X i,:,yi))(
d

∏
j=1

P(w j|γ j))P(γ) (3.12)

=
n+d+1

∏
i=1

ti(w,γ)≈
n+d+1

∏
i=1

t̃i(w,γ) (3.13)

Hernandez-Lobato approximated the posterior as product of bernoulli and gaussian distribu-

tion. Thus, Q is given by

Q(w,γ) =
d

∏
j=1

ρ
γ j
j (1−ρ j)

1−γ jN (w j|µ j,σ j) (3.14)

Usually, the term-approximation is desired to have the same form as the posterior. Thus,

t̃i(w,γ) =
d

∏
j=1

pγ j
i j (1− pi j)

1−γ jN (w j|mi j,si j) (3.15)

However, it can be shown that while approximating the loss function terms, there is no effect

on ρ’s. Thus, the term approximations used for i = 1...n are just N (w j|mi j,si j). For the terms

i = n+1...n+d, the term approximations are given by equation 3.15.

Next step is to evaluate equation 3.3 for all the terms from i = 1...n+ d. The n+ d + 1th term

is the prior, and thus, it suffices to set the initial posterior at this value. Thus, the first step is to

initialize the ρ j to 0.5, µ j to 0, σ j to 1, mi j to 0, si j to infinity and pi j to 0.5. Next, divide Q with

30

t̃i. For i = 1...n, we get

σ
\i
j = (

1
σ jold

− 1
si j

)−1

µ
\i
j = σ

\i
j (

µ jold

σ jold

−
mi j

si j
) (3.16)

For terms t̃i for i = n+1...n+d, µ j and σ j can be updated as above. The value of ρ j becomes

ρ
\i
j =

ρ jold/pi j

ρ jold/pi j +(1−ρ jold)/(1− pi j)
(3.17)

The next step is to multiply ti and Q\i and approximate the result in the form of equation 3.14

by minimizing KL divergence. Since, the distributions belong to the exponential family of distri-

butions, it suffices equate the expected values of w, wwT and γ . Thus, using equation 3.5 along

with

EQnew(γ) = Ep̂(γ) (3.18)

the new parameters for the posterior can be estimated. For this, first it is required to compute the

value of K from equation 3.6. For i = 1...n, the value of K is same as in expectation propagation,

that is φ(k). For i = n+1...n+d,

Ki =∑
γ

ˆ
w

ti(w,γ)Q\i(w,γ)dw

=∑
γ

ˆ
w
N (wi|0,σ2

1)
γiN (wi|0,σ2

0)
1−γi

d

∏
j=1

(ρ
\i
j)

γ j(1−ρ
\i
j)

1−γ jN (w j|µ\ij ,σ
\i
j)dw

=ρ
\i
i G1 +(1−ρ

\i
i)G0 (3.19)

31

where,

G0 = N (0|µ\ii ,σ
\i
i +σ

2
0)

G1 = N (0|µ\ii ,σ
\i
i +σ

2
1)

Now, for i = 1...n, identity 3.7 is used to solve, and come up with the same solution as in case of

simple expectation propagation. For i = n+1...n+d, one more additional identity,

Ep̂(γ) =
∂ logK

∂ p
p(1− p)+ p (3.20)

in addition to the ones mentioned in equation 3.7 are used to estimate the new parameters of the

posterior. And, the new parameters of the posterior are

µnew = µ
\i +δic1σ

\i
i

σnew = σ
\i−δic3(σ

\i
i)2

ρnew = ρ
\i +δi

G1−G0

Ki
ρ
\i
i (1−ρ

\i
i) (3.21)

where, δi is a vector of dimensionality d. Only its ith component is equal to 1, and rest of the terms

are zero. Also,

c1 =
1
Ki

(ρ
\i
i G1

−µ
\i
i

σ
\i
i +σ2

1

+(1−ρ
\i
i)G0

−µ
\i
i

σ
\i
i +σ2

0

)

c2 =
1

2Ki
(ρ
\i
i G1(

(µ
\i
i)2

(σ
\i
i +σ2

1)
2
− 1

σ
\i
i +σ2

1

)

+(1−ρ
\i
i)G0

(µ
\i
i)2

(σ
\i
i +σ2

0)
2
− 1

σ
\i
i +σ2

0

)

c3 = c2
1−2c2

The last step is to update the t̃i terms. Since, it is the division of Qnew by Qold , the resulting

32

Figure 3.2: Graphical representation of Sparsified Classification Problem using spike and slab prior

equations are similar to equation 3.16 and 3.17. A graphical representation of this method is given

in Figure 3.2. Here, we can see that the variable γ j influences the values of w j.

3.1.4 Multitask Learning with Feature Selection

Transition from Single task learning with feature selection to multitask learning with feature se-

lection is easy and was implemented by Daniel Hernandez-Lobato et al. (61). The true posterior

distribution in this case is given by

P(γ,w|Z) ∝ (
t

∏
k=1

n

∏
i=1

l(wk,Xk
i,:,y

k
i))

(
d

∏
j=1

N (w j|0,σ2
1)

γ jN (w j|0,σ2
0)

1−γ j)P(γ)

=
nk+d+1

∏
i=1

ti(w,γ)≈
nk+d+1

∏
i=1

t̃i(w,γ) (3.22)

This posterior can be approximated as

Q(w,γ) = (
t

∏
k=1

d

∏
j=1

N (wk
j|µk

j ,σ
k
j))

d

∏
j=1

ρ
γ j
j (1−ρ j)

1−γ j (3.23)

33

Figure 3.3: Graphical representation of multitask learning with sparsity enforced across features

The application of expectation algorithm on multitask learning is similar to the case of single task

learning case as described in section 3.1.3. The graphical representation of this method is shown

in Figure 3.3. As can be seen in the figure also, there is not much difference in the single task and

multitask learning feature selection. The only difference is γ j has effect on w j for all the tasks.

This framework however makes the assumption that all the tasks are related to each other. In

the next section I will talk about the algorithm I developed to cluster the tasks together, and use a

common set of selected features among the related tasks.

3.2 Methodology

In this paper, we designed an algorithm, which is able to simultaneously group multiple similar

tasks and train each group of tasks together. We impose that the tasks in each groups are related

by the features they select for performing each task. We use the expectation propagation as a tool

to estimate the posterior distribution given the dataset.

3.2.1 Clustering of tasks

In the previous section, we talked about multitask learning with feature selection. The main as-

sumption that was there was that the features selected for all tasks are the same. The measure

34

for tying tasks together is also selecting a common set of features for all the tasks. However, in

real world scenario, it is quite frequent to come across multitask learning algorithms where only

certain groups of tasks will share certain features. Our approach in this algorithm is to induce the

grouping of tasks that select same features. We essentially use a similar idea to multitask learning

with feature selection in the sense that we use spike and slab prior for feature selection and use

expectation propagation to estimate the posterior. However, we use mixture of Gaussian prior to

encourage grouping the probabilities associated with choosing each feature. In other words, we

put the prior on ρ’s associated with each task. Assume, we want to classify the tasks into nclusters

number of clusters. Then,

P(ρ) =
nclusters

∑
c=1

δcN (ρ|αc,βc) (3.24)

This prior is a sum of Gaussian which will encourage the ρ’s of different tasks to stay together.

However, we notice that this distribution is not a part of exponential family. However, if we add

another variable z which follows a categorical distribution (that is, the value of z is 1 for only one

element, and for all other elements it is zero), then,

P(ρ|z) =
nclusters

∏
c=1

N (ρ|αc,βc)
zc

P(z) =
nclusters

∏
c=1

δ
zc
c

P(ρ,z) =
nclusters

∏
c=1

δ
zc
c N (ρ|αc,βc)

zc

P(ρ,z) is from an exponential family. Hence, we approximate the posterior by

Q(w,γ,z) =(
t

∏
k=1

d

∏
j=1

N (wk
j|µk

j ,σ
k
j)

d

∏
j=1

ρ
γ j
j (1−ρ j)

1−γ j)

t

∏
k=1

ncluster

∏
c=1

δ
zc
c N (ρ|αk

c,Σc)
zc (3.25)

35

The true posterior will then be

P(γ,w|Z) ∝

t

∏
k=1

(
n

∏
i=1

l(wk,Xk
i,:,y

k
i)

d

∏
j=1

N (w j|0,σ2
1)

γ jN (w j|0,σ2
0)

1−γ j)

(
t

∏
k=1

ncluster

∏
c=1

N (ρ|ρk,λ k
c I))(

ncluster

∏
c=1

t

∑
k=1

rk
c) (3.26)

Here,

rk
c =

δcN (ρk|αc,Σc)

∑
ncluster
a=1 δaN (ρk|αa,Σa)

and

λ
k
c =

1
rk

c

The idea here is to impose that each task in each group of related tasks should choose a set of

features which are similar to other tasks within the same group. In other words, for each task there

is a zone of closeness around the space of the feature selected. The feature selected for the similar

tasks should be within that space and that space is enforced by an overlying Gaussian prior for that

group. Thus, the number of Gaussians we choose in the mixture of Gaussian model is same as the

number of groups of task we assume our model to have.

The graphical representation of our method is shown in Figure 3.4. It can be clearly seen from the

figure that γ t
j constraints each of wt

j. However, the values of γ t
j are forced to cluster together into

groups by enforcing another prior which is a mixture of gaussian structure.

In order to approximate true posterior as the approximate posterior, we can make use of the lo-

calization property of expectation propagation. Thus, we can just approximate the loss function

terms as gaussian as in section 3.1.2. Now, in equation 3.25, we notice that ρ is a variable and

not a parameter. Hence, we cannot proceed to update the spike and slab prior using the method

36

Figure 3.4: Graphical representation of multitask learning with sparsity enforced across features

referred to in sections 3.1.3 and 3.1.4. One way to update Q\iti will be to calculate K as integration

of Q\iti over all the variables, and then use expectation identities for minimizing KL-divergence to

approximate Q\iti in form of equation 3.25.

For computational ease, instead, we divided the prior into three parts and make use of the hierarchi-

cal structure of the prior. We use this approach for this paper. Thus, first, we estimate the values of

w and ρ as in the case of single task learning (3.1.3). Next, based on the values of ρ’s estimated, we

estimate the distribution P(ρ,z) which is the mixture of gaussian model. The values of αc are ran-

domly chosen to be same as any of the ρ’s value, and the values of Σc are a d dimensional vector of

ones. The δc is initialed as 1/ncluster. The value of rk
c is then computed for each c = 1...ncluster

and k = 1...t. Now, for each k = 1..t, the term tk = ∏
t
k=1 ∏

ncluster
c=1 N (ρ|ρk,λ k

c I)(∏ncluster
c=1 ∑

t
k=1 rk

c)

is multiplied with P(ρ,z) and the values of αc, Σc and δc are re-estimated. The new values of αc,

37

and Σc are then estimated by simply multiplying the gaussians together. Thus,

Σc =(Σ−1
cold

+λ ×1−1)−1

αc =Σc(αcold Σ
−1
cold

+ρkλ ×1−1)−1

Here, x−1 represent the element wise reciprocal of the vector x, and 1 is just a vecor of ones. δc is

updated to be the same as rk
c . Now, the clusters of the tasks have been obtained with means αc. We

now estimate the value of zk. zk is equal to 1 for the cluster for which rk
c is maximum and zero for

other values of c. Thus, zk is 1 for the group to which ρk belongs to. We now assign each ρ to be

equal to the mean of the group it belongs to. Remainder of the procedure for updating ρ and w is

similar to the method referred to in section 3.1.4.

3.3 Results

In this paper, we developed an algorithm for training multiple tasks when the number of features

and tasks are large in comparison to the number of samples. We grouped the related tasks together

and transferred information only amongst the related tasks. We use spike and slab and mixture of

gaussians as prior and use expectation propagation for the inference of the posterior. We compare

our method on two datasets, toxcast and mnist. We show that when the number of tasks are large,

then our algorithm performs better than simple multitask learning. The algorithms we use for com-

paring are:

MTLC: This is our method described in this paper.

MTL: This method is the simple multi-task learning with feature selection method.

EP STL: This method is single task learning using expectation propagation. We assume that

the covariance matrix is diagonal.

38

EP STLF: This is single task learning with feature selection.

Kang: This is the method as described in (73). This method is very similar to our method as

it finds the groups of relevant tasks together and then trains the relevant tasks together.

We thank Kang and Hernandez for providing us their code for comparison.

3.3.1 Toxicity Dataset

The information gap between the new chemicals developed and the toxicity profiles we have for

these chemicals is increasing drastically. The time required for testing a chemical can be a couple

of years, but the number of new chemicals being developed each year is around 1000. The number

of chemicals untested for their toxicity profile is increasing every year, and for this purpose the En-

vironmental Protection Agency (EPA) thought about developing new methods for toxicity testing

of chemicals which is faster and cheaper than the traditional methods. Thus, the EPA collected a

dataset comprising of results of certain in vitro assays on each of the chemicals and their entire in

vivo toxicity profiles on several species of animals.

The toxicity dataset compromises of 245 unique chemicals. Most of these chemicals are either

currently or previously used pesticides, so this ensures that we have the full toxicity profiles of

these chemicals. We obtained the structural properties of these chemicals using a software called

Dragon version 5.5. The chemicals were also screened using various different assay technologies

and the results of those assays were also provided by the EPA. The physical-chemical properties

of these chemicals were also accounted for in this dataset. EPA used several softwares to compute

the physical-chemical properties of these chemicals.

We concatenated all these descriptors to form the feature set for the data. There were a total

39

Table 3.1: Comparison of performance of our algorithm with others on toxicity dataset.

Method Mean Error % Variance

MTLC 4.42 0.13

MTL 13.33 0.13

EP STL 5.32 2.92

EP STLF 4.73 0.4

Kang NA

of 988 features in the data. The in vivo toxicity results were also compiled by the EPA Toxicity

Reference Database. This dataset consists of in vivo toxicity predictions on multiple end-points

on rat, rabbit and mouse. There were a total of 181 tasks. We chose the number of groups for

my algorithm to be three, because the toxicity was tested on three different species. We divided

the entire dataset into two parts, training and testing. Eighty percent of the dataset was used for

training and remaining twenty percent for testing. This whole process was repeated 100 times and

the mean of the error is recorded here in Table 3.1.

3.3.2 MNIST dataset

MNIST dataset consists of the images of a set of handwritten set of digits from 0 to 9. Each of the

images was normalized to fit in 20 × 20 pixel box, then these images were centered in 28 × 28

pixels image. For this, first the center of mass of the pixels was computed, and then the pictures

were aligned so that the center of mass falls in the center of 28× 28 pixels. This database consisted

of 60,000 samples. We formed a vector from the 28 × 28 image giving us a feature vector of 784

dimensional length. We randomly chose 600 samples for training and tested on remaining samples.

We repeated this process 100 times. The number of groups were again chosen to be 3 for being

consistent. The results are reported in Table 3.2.

40

Table 3.2: Comparison of performance of our algorithm with others on MNIST dataset.

Method Mean Error % Variance

MTLC 7.47 0.12

MTL 6.81 0.12

EP STL 10.22 0.018

EP STLF 7.67 0.006

Kang 25.3 0.0007

3.3.3 Discussion

As can be seen from Tables 3.1 and 3.2 that when the number of tasks is small, as in MNIST

dataset, we did not benefit much from grouping only the relevant tasks together. And thus, simple

multi-task learning, which is equivalent to having just one group performed the best. However,

when we had a large number of tasks, as in toxicity dataset, the negative transfer of information

significantly reduced the performance of multitask learning with feature selection.

To elaborate this point further, we varied the number of tasks in the toxicity datasets between

5 and 70 and plot the error produced. The tasks were picked randomly, and the dataset was also

randomly divided into 80% training and 20% testing. This process was repeated five times and the

reported values are the mean of the errors. The results are plotted in Figure 3.5. As can be seen, as

the number of tasks increases, our method performs significantly better than traditional multitask

learning.

We also compare our method against the algorithm developed by Kang et al. We observe that

this algorithm takes a very long time to train as compared to ours. For toxicity dataset, training one

set of training samples took more than 18 hours and resulted in complex parameters, whereas, our

algorithm just took less than 5 minutes. For MNIST dataset, this method does not perform well

41

Figure 3.5: The error produced by conventional multi-task with feature selection and our method
when the number of tasks is increased

because of the high number of features.

3.4 Conclusion

In the current work, we showed that conventional multitask learning does not always improve

the performance. More specifically, if the tasks are not related to each other, the performance of

multitask learning deteriorates. Thus, we developed an algorithm that will group the relevant task

together and tie the relevant tasks by selecting the common features required to train each tasks.

We successfully show that our algorithm does improve the performance when the number of tasks

and features is large.

42

Chapter 4

Identification and Training of Task Clusters

in Multitask Feature Learning with L0

Norm using Bayesian Framework

Multitask feature learning is the name given to the process of learning of both the features and

multiple tasks function simultaneously (5). It has been an active research topic for several years

(6) (103) (90) (169) and finds natural applications in diverse application domains including image

recognition, toxicity prediction of chemicals, and gene expression data analysis among others. The

major advantage of multitask feature learning is that, it improves the generalization error when the

number of features are much larger than the number of samples in a given dataset (103). Multitask

feature learning improves the generalization error by sharing the training information between the

tasks and also reducing the variance of the parametric model by penalizing the effective number of

features (13) which results in an improved performance.

There are two key problems associated with multitask feature learning, first, the use of loosely

defined approximations of L0 norm for feature learning, and second, the assumption that all the

tasks in multitask feature learning are related to each other. L0 norm is the ideal choice for gen-

43

erating sparsity as it directly penalizes the number of non-zero values. However, the optimization

problem using L0 norm becomes difficult to solve owing to the non-convex nature of L0 norm.

Instead, the most popular choice for feature learning remains to be L1 norm (5) because it is the

nearest convex approximation (51) of the ideal L0 norm. Hence, L1 norm is only used because of

the ease of optimization, and results in a suboptimal performance (51). The convergence rate using

the convex approximation is also suboptimal (166) when compared with L0 norm.

The other aspect of multitask feature learning is the assumption that all the tasks are related with

each other. It has been shown that training unrelated tasks with each other can actually degrade the

performance (54). In the recent years, there has been developments in the area of identification,

clustering and training of related tasks. For example, Jacob et al (68) and Evgeniou (43) utilized

the assumption that the related tasks lie close together in the physical space or share a common

prior and group the tasks together. On the other hand, following authors (79), (107), (54) assume

that the tasks are related in an underlying latent space to identify the related tasks and train them.

However, all of above mentioned algorithms in literature do not use feature learning.

In this paper, we have developed a novel bayesian multitask feature learning framework for the

identification and training of related tasks using an equivalent of the ideal L0 norm which en-

courages sparsity in the feature space. This approach is simpler and more intuitive than existing

clustered multitask feature learning algorithms. In this approach, we formulate a new prior that

combines the spike and slab prior, which is an equivalent of L0 norm, with a categorical distribu-

tion. This prior identifies the related tasks together and selects a common set of features that are

used by the related tasks. We also show the process of inferring the tasks parameters using the

combination of discontinuous priors mentioned above, which is otherwise difficult to obtain. The

proposed algorithm in this paper is referred to as "MTLC0" from here onwards. At last, we have

tested our algorithm on several real world datasets, such as toxicity prediction, digit recognition

and object recognition from descriptive words. Experimental studies show that MTLC0 not only

44

has better performance than other algorithms, but the time required for inference is also lower than

the leading algorithms. The complexity of MTLC0 varies only linearly with the number of tasks,

samples and features.

The subsequent discussion is organized as follows. We first present a brief literature review in

section 4.1, thereafter, we introduce MTLC0 algorithm which is outlined in section 4.2. In the

methodology section, we describe the notation used, present the proposed algorithm and describe

the process of inferencing the task parameters. Lastly, in section 4.3, we compare the performance

of MTLC0 algorithm with other state of the art algorithms on both synthetic and real world data.

4.1 Related Work

Multitask Learning has been known to improve generalization performance (20). There are mul-

tiple approaches for modeling the relationships between tasks in multitask learning. Some algo-

rithms impose a regularization penalty over the task parameters (43) (45), while other algorithms

impose a common prior over the task parameters (9) (4) (161). Below, we first focus on feature

learning in multitask learning formulation and then the problem of grouping related tasks together.

Feature Learning in multitask formulation is a widely studied topic (90) (6) (5). The most com-

mon way to achieve feature learning in multitask formulation is to impose L1 regularization over

the task parameters. L1 norm is a loosely defined approximation of the ideal L0 norm which is used

for encouraging sparsity (163). Basically, L0 norm penalizes the number of non-zero terms. Any

norm in the interval (0,2) is an approximation to L0 norm that might be used for feature learning.

Norms in the interval (0,1) are not convex, while norms in the interval [1,2) are convex. Thus, the

closest convex approximation for L0 norm is L1 norm. L1 norm also has a number of properties

related to proving the optimality of solutions, and there are a wide array of tools available to solve

L1 norm. This makes L1 norm as the most popular choice for feature learning (100). But, using

45

the L1 norm results in a performance degradation when compared to L0 norm (69). To combat

this issue, some algorithms propose the use of a combination of L1 and L∞ norm (69) (145) (163),

which is still a loose approximation of ideal L0 norm.

The major problem in using the L0 norm for feature selection is that it is computationally difficult

to solve. One way to solve for L0 norm is to do a subset selection (166). But the complexity of this

problem quickly grows with the number of features (66). The equivalent of L0 norm in bayesian

framework is the spike and slab prior (66) (60). Basically, spike and slab prior is a discrete mixture

of a point mass and a continuous distribution known as spike and slab. In (61), Hernandez et al.

proposed a multitask learning algorithm which made use of spike and slab prior to promote feature

learning. However, the assumption made in this algorithm was that all the tasks are related to each

other.

Multitask learning with the identification of related tasks is also a popular topic recently. It has

been known that training unrelated tasks can actually have a negative impact on the performance

rather than improving it. Thus, there have been studies where the researchers have tried to group

the related tasks together. In (27), the authors assumed that the task relationships are known a

priori. This assumption is more than often not valid, as it is often difficult to identify the related

tasks. In (68) and (170), authors assume that the task parameters of related tasks lie close together

in the physical space. Thus, the clusters are formed using L2 norm of the distance of the task

parameter with the mean of the parameters of that cluster. Algorithms such as (79), (171), (107)

and (54) assume that the tasks are related in underlying latent space and group the tasks using this

information. The above mentioned algorithms, however, do not consider feature learning in their

framework. In (70), the authors used Lp,q norm where both p and q belong to the interval (1,2) for

feature learning, and group the tasks together as well. In (73), Kang et al. used feature learning

with multitask learning to group the related tasks. However, Kang et al. used L1 norm to enforce

feature learning, which is the closest approximation to L0 norm proposed here. Also, the authors

46

use a convex approximation of integer programming to identify the groups of tasks. In (98), the

authors had designed an algorithm that coupled spike and slab capped with a mixture of gaussian

prior for grouping of related tasks. The key limitation of this work is that the algorithm needs a

larger number of tasks to be able to show an improvement in performance over conventional mul-

titask learning without grouping. For a smaller set of tasks, this algorithm often becomes unstable

and often does not converge.

In this paper, we develop a novel way for identification of related tasks in multitask learning

framework with feature selection. Our algorithm, MTLC0, uses spike and slab prior to identify

the related tasks and encourage the same choice of features to be selected within each group of

related tasks. We compare MTLC0 majorly with (73), because this algorithm not only groups the

tasks but also uses the closest convex approximation of L0 norm for feature learning. In addition,

MTLC0 is also compared against (98) and (61). It is empirically proven that the performance of

MTLC0 is superior to other state of the art methods. We also show that our algorithm performs

much faster than similar algorithms in the same domain.

4.2 Methodology

In this paper, we develop an algorithm which identifies the tasks which are related to each other,

and selects a common set of features for each of the group of related tasks. Thus, only the tasks

which are related to each other share information among themselves. With this framework, we

hope to improve the generalization performance of multitask learning algorithms. In this section,

we will first talk about the notation used, then present the problem formulation and finally present

the algorithm that we proposed.

47

4.2.1 Notation Used

Consider a given dataset Z consisting of input matrix X t and output vector yt , for all t = 1,2, ...T ,

where T is the total number of tasks. Let there be d number of features in the input vector for each

sample, and let there be N number of samples. We denote all the matrices by bold capital letters,

and all the vectors with bold small case letters. Thus, xt,i denotes the feature vector of ith sample

of tth task. We consider a linear classifier where the boundary of the classifier for each task is

denoted by y = X twt , where wt is the parameter vector for task t, and W is the entire parameter ma-

trix formed by putting together all the parameter vectors for each of the tasks in individual columns.

4.2.2 Problem Formulation

Linear classifiers are the most popular classifiers. There are several reasons for that. When the

dimensional space is very large compared to number of samples, it is always possible to separate

the training samples perfectly using a linear classifier. Since, linear classifiers are the simplest

classifiers, we do reduce the model variance considerably in choosing a linear classifier without

jeopardizing the model bias. Also, it is very easy to change linear classifier into nonlinear classifier

by simply projecting the input space to a higher dimensional space such as done in using kernels

for classification. Thus, we consider a linear classifier for each of the task, and we assume that the

decision for each of the task t can be given by

yt = sign(xtwt) (4.1)

We have not considered the bias term as bias term can be easily incorporated by simply extending

the input vector by a constant.

Further, we assume that the parameters for the above classifier can be obtained from obtaining

the mean of a gaussian distribution. Thus, in order to infer the parameters wt , a bayesian approach

48

was taken. Utilizing the bayes rule, we get

P(w|Z) = P(Z|w)P(w)
P(Z)

(4.2)

P(Z|w) is the likelihood function of the model, which is a product of loss functions for clas-

sification. Here, we consider the loss function of the model to be a cumulative gaussian function

which ranges from 0 to 1. Then, the likelihood function is given by

P(Z|w) =
T

∏
t=1

N

∏
i=1

l(xt,i,:wtyi) (4.3)

where l(xt,i,:wtyi) is the loss function used. We can use any other loss function such as 0-1 loss

function, or the sigmoid loss function in this case. Both sigmoid and cumulative gaussian function

are similar and their advantage over 0-1 loss function is their continuity. Despite being discontin-

uous, we can easily modify the below algorithm to use 0-1 loss function as well. However, we

simply chose cumulative gaussian loss function over others.

P(w) is the prior chosen for the parameters. The choice of standard normal distribution as the

prior is basically the same problem formulation as using the L2 norm regularization. In this case,

the parameters are penalized in the direction the variation of the data is least. Since, we want to

incorporate feature selection in our formulation, using a standard normal distribution for prior is

not beneficial. Priors such as Laplace distribution, which is similar to L1 regularization, is not ideal

either in the sense that these priors assign a zero probability to the case that some of the parameters

are zero (60) (83). ARD prior is also used to encode sparsity, but this prior does not encode the

uncertainty of selecting each feature in the posterior. In this paper, spike and slab prior was used

because it is considered as the golden standard for the sparse prior from bayesian perspective (83)

and it is equivalent of ideal L0 norm used for feature learning. The reason spike and slab prior is

not used often is that because of its discontinuity, it is much harder to infer.

49

The spike and slab prior is given by

P(w j|γ j) = N(w j|0,σ2
1)

γ jN(w j|µ j,σ
2
0)

1−γ j (4.4)

where σ1 = 1 and σ0 = 0. Thus, if a feature j is selected, the value of γ j is one and a standard

normal prior is associated with that feature. If a feature is not selected, this implies that γ j = 0, and

a spike is associated as the prior of that feature. This indicates that there is a very feeble probability

of that feature to be selected.

The above mentioned spike and slab prior can also be approximated as a product of bernoulli

distribution (61),

d

∏
j=1

ρ
γ j
j (1−ρ j)

(1−γ j) (4.5)

where γ j is a bernoulli variable and only accepts the value of 0 and 1. Thus, a feature j is selected

if γ j is 1, else feature j is rejected.

In order for simple multitask learning as in (61), we can keep the same γ j for all tasks, enforc-

ing the choice of features which are selected and rejected are same across all tasks. However,

identification of relevant tasks is also a key problem, and we need to ensure that similar features

are shared across tasks belonging to the same group. One way to group the tasks together is to

keep different γ j,t for each feature of each task, and then cluster the γ:,t together so that groups of

tasks are identified as in (98). However, this is a much slower approach where the rigidness of the

coupling of the tasks is not tight enough. Hence, it does not necessarily improve the performance

of the generalization error over multitask learning and needs a large number of tasks to converge.

In this paper, the grouping of the tasks is considered using a categorical distribution which is

also an approximation of L0 norm. Thus, we propose using the same values for γ j for the tasks in

50

a same group. The group with which a task belongs to is decided using a categorical distribution.

The prior in this case is given by

P(w|γ,δ) =
nc

∏
k=1

δ
zk,t
k,t

(d

∏
j=1

(N(w j|0,σ2
1)

γ j,k

N(w j|µ j,σ
2
0)

(1−γ j,k)

)zk,t

(4.6)

Here, δk,t is the probability of task t to be associated with group k. For any given task t, the sum

of δ:,t is constrained to be equal to one. Also, zk,t is a categorical variable, which can take the value

of one for only one k, and is zero for all other values of k. Thus, the posterior of the parameters is

formulated as

P(w|Z,γ) =
T

∏
t=1

(N

∏
i=1

l(xt,i,:wtyi)

)
nc

∏
k=1

δ
zk,t
k,t

(d

∏
j=1

(N(w j|0,σ2
1)

γ j,k

N(w j|µ j,σ
2
0)

(1−γ j,k)

)zk,t

(4.7)

It is difficult to infer this framework of the posterior because of the discontinuous probabilities

involved at both feature selection level and group selection level. Thus, we approximate the above

posterior using expectation propagation.

4.2.3 Expectation Propagation

Expectation Propagation is an approximation technique formulated by Thomas Minka in 2001. It

is inspired from kalman and adaptive filters. According to expectation propagation, the posterior

Q is considered to be a product of n terms, ti, for i = 1,2, ...n. Suppose we need to approximate Q

with Q̃. Then, all the terms ti get approximated by t̃i.

51

The way expectation propagation works is that the term t̃i is removed one at a time and replaced

with the exact ti term. The resulting product is approximated as Q̃. Then, t̃i is re-estimated. This

entire process is repeated until convergence. The summary of this algorithm is represented by the

following equations.

Q\i = Qold/t̃i

Qnew ≈ Q\i× ti

t̃i = Qnew/Qold (4.8)

For our case, the true posterior distribution is given by Equation 4.7. One way to approximate

this posterior is to approximate it as a product of gaussian, bernoulli and categorical distribution.

Thus,

P(w|Z,γ) =
T

∏
t=1

(
N

∏
i=1

l(xt,i,:wtyi)

)
nc

∏
k=1

δ
zk,t
k,t

(
d

∏
j=1

ρ
γ j,k
k, j (1−ρk, j)

(1−γ j,k)

)zk,t

(4.9)

We consider breaking the problem into two parts. The first part consists of the product of loss

functions which needs to be approximated as the gaussian. The second part is approximating the

spike and slab prior as the product of bernoulli distribution as given in equation 4.5. The second

part is the step which not only encourages sparsity, but is responsible for grouping the tasks as

well. Basically, the second part involves inferring the values of δk,t and ρk, j.

The approximation of the first term is done just as in (96). The first step to solve is to initial-

ize the posterior Q by standard normal distribution, and the term approximations t̃i with infinite

52

variance Gaussian. The reason for initial choice of Q to be standard normal is that this is the initial

prior which is considered for classification without feature selection in (96), and the reason for t̃i

to be flat is to have a non-informative starting point for the term approximations.

The next step is to divide the t̃i from the posterior Q. Since, both Q and t̃i are normal distribu-

tion, dividing t̃i from Q will be another Gaussian. Thus,

Q\i = N (w|µ\i,Σ\i)

where,

Σ
\i = (Σ−1

old− si
−1)−1

µ
\i = Σ

\i(µT
oldΣ

−1
old−mi

T si
−1) (4.10)

Now, it is required to estimate the new posterior by estimating p̂ = tiQ\i as a Gaussian. Thus, the

Kullback-Leiber divergence between Qnew and tiQ\i is minimized to estimate the parameters µnew

and Σnew. Since, Q comprises of product of members from exponential families, Kullback-Leiber

divergence can be minimized by simply equating the expected values of the two distribution.

EQnew(w) = Ep̂(w)

EQnew(wwT) = Ep̂(wT w) (4.11)

If

K(µ\i,Σ\i) =

ˆ
w

tiQ\idw (4.12)

53

Then, it can be shown that

Ep̂(w) = µ
\i +Σ

\i5
µ\i logK(µ\i,Σ\i)

Ep̂(wwT)−Ep̂(w)E p̂(w)T = Σ
\i−Σ

\i(5
µ\i5

T
µ\i

−25
Σ
\i logK(µ\i,Σ\i)

)
Σ
\i (4.13)

Solving 4.13, the values of µnew and Σnew are estimated as

µnew = µold +ΣoldαiXT
i,:

Σnew = Σold− (ΣoldXT
i,:)

(
αiX i,:µnew

X i,:ΣoldXT
i,:

)
(ΣoldXT

i,:)
T (4.14)

where,

αi =
1√

X i,:ΣoldXT
i,:

N (k;0,1)
φ(k)

k =
µT

oldXT
i,:√

X i,:ΣoldXT
i,:

Last, the term approximations need to be updated again, which can be done by just dividing

Qnew by Qold . Thus,

t̃i = N (w|mi,si)

where,

si = (Σ−1
new−Σ

−1
old)
−1

mi = si(µ
T
newΣ

−1
new−µ

T
oldΣ

−1
old) (4.15)

A small note we want to make here is that we make an assumption that Σ matrices in the above

54

case are diagonal. This assumption reduces the complexity of the algorithm, and according to our

observations, does not effect the performance significantly. In many cases, we have actually ob-

served an improvement in performance. This assumption also helps in improving the stability of

the algorithm.

The next step is the approximation of ρ terms. For this, we work according to the guidelines

of (61). However, in this algorithm, we need to learn the clusters of the related tasks, and ensure

that similar features are shared across tasks belonging to the same group. Thus, we divided this

part of inference into two sub-parts. The first part focuses largely on inferring ρ , which is the

probability of each feature to be selected within a group. The second sub-part focuses on inferring

δ , which is the probability of each task to belong to a certain group. Thus, first we need to initialize

the ρ j to 0.5, µ j to 0, σ j to 1, mi j to 0, si j to infinity and pi j to 0.5. Next, divide Q with t̃i. For

i = 1...n, we get

σ
\i
j =

(
1

σ jold

− 1
si j

)−1

µ
\i
j = σ

\i
j

(
µ jold

σ jold

−
mi j

si j

)
(4.16)

For terms t̃i for i = n+1...n+d, µ j and σ j can be updated as above. The value of ρ j becomes

ρ
\i
j =

ρ jold/pi j

ρ jold/pi j +(1−ρ jold)/(1− pi j)
(4.17)

The next step is to multiply ti and Q\i and approximate the result in the form of equation 4.7 by

minimizing KL divergence. Since, the distributions belong to the exponential family of distribu-

tions, it suffices equate the expected values of w, wwT and γ . Thus, using equation 4.11 along

with

EQnew(γ) = Ep̂(γ) (4.18)

the new parameters for the posterior can be estimated. For this, first it is required to compute the

55

value of K from equation 4.12. For i = 1...n, the value of K is same as in expectation propagation,

that is φ(k). For i = n+1...n+d,

Kt
i =∑

γ,z

ˆ
w

ti(w,γ)Q\i(w,γ)dw

=∑
γ,z

ˆ
w
N (wt

i|0,σ2
1)

γiN (wt
i|0,σ2

0)
1−γi

nc

∏
k=1

d

∏
j=1

(
δk,t(ρ

\i
j,k)

γ j,k(1−ρ
\i
j,k

)1−γ j,k
)zk,t

N (w j|µ\ij ,σ
\i
j)dw

=
nc

∑
k=1

[
δk,t(ρ

\i
j,tG1 +(1−ρ

\i
j,t)G0)

]zk,t
(4.19)

where,

G0 = N (0|µ\ii ,σ
\i
i +σ

2
0)

G1 = N (0|µ\ii ,σ
\i
i +σ

2
1)

Now, for i = 1...n, identity 4.13 is used to solve, and come up with the same solution as in case of

simple expectation propagation. For i = n+1...n+d, one more additional identity,

Ep̂(γ) =
∂ logK

∂ p
p(1− p)+ p (4.20)

in addition to the ones mentioned in equation 4.13 are used to estimate the new parameters of the

posterior. And, the new parameters of the posterior are

µnew = µ
\i +dic1σ

\i
i

σnew = σ
\i−dic3(σ

\i
i)2

ρnew = ρ
\i +di

G1−G0

Ki
ρ
\i
i (1−ρ

\i
i) (4.21)

56

where, di is a vector of dimensionality d. Only its ith component is equal to 1, and rest of the terms

are zero. Also,

c1 =
1
Ki

nc

∑
k=1

δ
\i
k,t

(
ρ
\i
i,kG1

−µ
\i
i

σ
\i
i +σ2

1

+(1−ρ
\i
i,k)G0

−µ
\i
i

σ
\i
i +σ2

0

)
c2 =

1
2Ki

nc

∑
k=1

δ
\i
k,t

[
ρ
\i
i,kG1

((µ
\i
i)2

(σ
\i
i +σ2

1)
2
− 1

σ
\i
i +σ2

1

)
+(1−ρ

\i
i,k)G0

((µ
\i
i)2

(σ
\i
i +σ2

0)
2
− 1

σ
\i
i +σ2

0

)]
c3 = c2

1−2c2

The last step is to update the t̃i terms. Since, it is the division of Qnew by Qold , the resulting

equations are similar to equation 4.16 and 4.17.

si j =

(
1

σ jnew

− 1

σ
\i
j

)−1

mi j = si j

(
µ jnew

σ jnew

−
µ
\i
j

σ
\i
j

)

pi j =
ρ jnew/ρ

\i
j

ρ jnew/ρ
\i
j +(1−ρ jnew)/(1−ρ

\i
j)

(4.22)

The next sub-part involves the inference of the δ terms to identify the group of tasks as well.

For approximating the last part, the first step again is to divide Q with t̃i. So, delta is updated as

δ
\i
k,t =

δk,told/dk,t

∑
nc
m=1 δm,told/dm,t

(4.23)

The next step is to approximate Q\iti to the form of Qi by minimizing the KL divergence be-

tween the two distributions. Since, the posterior is a member of exponential family, KL divergence

57

is minimized by equating the expectations of both the distributions. Thus, the value of δk,t would

be the same as the expectation of Q\iti.

Consider a distribution of the form p(x) = 1
K t(x) f (x|δ) where f (x|δ) is a categorical distribu-

tion and t(x) is an arbitrary function of x, where K = ∑x t(x) f (x|δ), then the expected value of δ

can be easily derived as

Eδ j(x j) =
∂ logK

∂δ j
δ j (4.24)

Thus, the value of K can be obtained from equation 4.19. Plugging it in above equation, the

value of δk,t is given by

δ
t
k =

1
K

δ
\i
k,t

(
ρ
\i
j,tG1 +(1−ρ

\i
j,t)G0

)
(4.25)

Finally, the t̃i terms are updated using equation similar to 4.23.

dk,t =
δk,tnew/δ

\i
k,t

∑
nc
m=1 δm,tnew/δ

\i
m,t

(4.26)

For the above algorithm to work, we need to first perturb the initial values of ρ ′s and δ ′s. So,

we first solve equations 4.14 and 4.21 for all samples for all tasks only once. Then we use k-means

to perform a quick estimation of ρk, and initialize δk accordingly. Then, the algorithm is imple-

mented further until convergence to estimate the correct values of W ′s, ρ ′s and δ ′s.

4.2.4 Summary of the Algorithm

A summary of the above mentioned algorithm is mentioned in the Algorithm 1. Basically, we first

need to initialize all the parameters of the algorithm, and then solve the above-mentioned equations

iteratively until convergence is reached. The final class of a given sample can be predicted by using

58

Algorithm 1 Summary of MTLC0 algorithm
Require: Number of groups nc, input data and output labels

Initialize all µ as 0, σ as 1, ρ as 0.5 and δ as 1/nc.
Initialize the term parameters m’s as 0, s’s as ∞, p’s as 0.5, d’s as 1/nc
Solve 4.14 and 4.21 once for all i = 1..n and t = 1..T , and cluster the rho’s into nc groups for
inital estimate of ρ and δ

repeat

for all t=1..T do

for all i=1..n do

Divide term approximations from Q using equations 4.10.
Find updated µ and Σ using equation 4.14
Update term approximations using equation 4.15

end for
end for
for all t=1..T do

for all j=1..d do

Divide term approximations from Q using equations 4.16 and 4.17.
Find updated µ , σ , ρ and δ using equations 4.21 and 4.25 for all values of k=1...nc
Update the term approximations using equations 4.22 and 4.26 for all values of k=1..nc

end for
end for

until covergence
return The mean of the weights µ

the equation y = sign(xT
t µ t).

4.3 Experimental Study

In this paper, we presented an algorithm that will identify the groups of related tasks and select a

common set of features for each group of task. First, we show the performance of our dataset on

synthetic data, and then we present the results on several real world. At the end, we show how our

algorithm compares in the training time compared to other state of the art data. We compare our

59

results against the following algorithms:

MTLF: This algorithm was formulated by Hernandez et al. (61). It is similar to our algorithm

as it uses spike and slab prior for the feature selection process. But this algorithm also makes the

assumption that all the tasks are related to each other and does not group the tasks.

Kang: This algorithm learns the groups of related tasks along with feature learning and then trains

the model (73). This algorithm is the closest to MTLC0, as it uses L−1 norm for feature learning,

which is the closest convex approximation to L0 norm, and groups the related tasks together.

MNEP: This algorithm (98) also uses spike and slab prior for feature selection as well, and uses

mixture of gaussian prior for grouping the tasks. As can be seen from the results, it has high con-

vergence problems when the number of tasks are small.

cCMTL: Convex relaxation of Clustered Multitask Learning (171) uses k-means clustering by

minimizing sum of squared error to discover the task relationships. This method does not do fea-

ture selection.

CASO: Convex relaxation of Alternate Structure Optimization (26) learns a common shared struc-

ture for all the task in lower dimensional subspace.

JMTFL: JMTFL (70) is another algorithm for clustered multitask learning with feature selec-

tion. However, we could not compare with this method as this algorithm produced out of memory

error for our datasets.

MTLC0: Proposed algorithm

We would like to thank Jawanpuria, Chen, Zhou, Kang and Hernandez for providing us with their

60

code.

4.3.1 Synthetic Dataset

We designed a synthetic dataset to check the working of our algorithm. The dataset consisted

of sixteen tasks, thirty samples and eight features. The thirty samples for each task were drawn

from normal distribution with zero mean and 0.1 variance. The labels of the tasks were set equal

to yt
i = sign(βtxt

i). For tasks 1 to 4, the parameters β were drawn from a gaussian of mean

[−1,1,−1,1,0,0,0,0]. For task 5 to 8, parameters were drawn from gaussian distribution of mean

[0,0,0,0,1,1,1,1], and for tasks, 9 to 12, the parameters were drawn from normal distribution of

mean [1,1,1,1,0,0,0,0]. For the last four tasks, the parameters were drawn from normal distribu-

tion of mean [0,0,0,0,−1,1,−1,1]. The variance was kept at a value of 0.01 for each case. The

true value of parameters are represented in Figure 4.1a. The number of groups in this case are

4. This dataset was constructed 100 times and divided into 60% for training and 40% for testing

and tested on the algorithms mentioned above. The evaluation metric we use is the fraction of

incorrectly classified samples. The results are summarized in Table 4.1.

The image of the parameters for one randomly picked instance from the training process is also

plotted in Figure 4.1. It can be seen that the parameters estimated by MTLC0 much closely rep-

resents the ground truth as compared to Kang et al’s method in terms of the groups of non-zero

and zero values formed. This difference, even though may seem to be small, results in significant

improvement in the average classification error as shown in Table 4.1.

We also vary the number of groups to 2, 4, 6 and 8 and evaluate the performance of each of

the algorithms. These results are also summarized in Table 4.1. It can be observed that MTLC0

has a superior performance in all cases.

61

Table 4.1: Performance on Synthetic Dataset for varying number of groups. Here, fraction of
misclassified samples are reported. G stands for the number of groups used

Error
Algorithm G=2 G=4 G=6 G=8

MTLF 0.1890 0.1890 0.1890 0.1890
Kang 0.2150 0.2170 0.2162 0.2147

MNEP 0.2651 0.2676 0.2662 0.2658
MLC0 0.1769 0.1781 0.1788 0.1762

Task

Fe
at
ur
es

4 8 12 16

2

4

6

8

(a) Ground Truth

Task

Fe
at
ur
es

4 8 12 16

2

4

6

8

(b) MTLC0

Task

Fe
at
ur
es

4 8 12 16

2

4

6

8

(c) Kang et al

Figure 4.1: The figure displays the value of the normalized weights estimated for the sythetic data.
(a) is the ground truth, (b) is the result from current MTLC0 method and (c) is the result from Kang
et al’s method. The number of groups was set to 4. In these figures, -1 and 1 are represented by
black and white colors respectively. All the in-between values are represented by shades of gray.

62

4.3.2 Datasets Used

We considered several real world datasets from different realms of life. We use three datasets

from Kang’s et al paper called small-MNIST, USPS, and Animal dataset. We also downloaded the

dataset from the MNIST website and used the raw data without any preprocessing. Additionally,

we evaluated our algorithm on a toxicity dataset as well. The number of groups were kept to 3 for

all the datasets.

MNIST dataset

This dataset was directly downloaded from the MNIST webpage. The dataset consisted of 28×28

pixels images of handwritten digits. The images obtained was centralized to fit the inner 20× 20

pixels of each image. The feature vector was obtained by simply concatenating all the pixels into

a vector. The labels consisted of the digits from zero to nine. Ten binary tasks were created from

the labels, such that each task classified one digit against the rest. There were a large number of

samples for this dataset. We only used 1% of the dataset for training and the other 99% for testing.

The experiment was repeated 100 times. All the algorithms were trained and tested on the same

set of training and testing samples each time.

small-MNIST dataset

Small-MNIST is a preprocessed MNIST dataset obtained from (73). This is a classic handwritten

digit recognition dataset. The images were preprocessed using PCA, and the dimensionality of the

images were reduced to 64 as described in (73). Only 2,000 samples were provided for the ten

tasks as discussed above.

USPS dataset

This is another digit recognition dataset (64). The preprocessing on these images was similar to

smallMNIST. After PCA, only 87 features were kept (73). The ten tasks were created by binarizing

the ten labels, and only 2000 total samples were provided.

63

Animal dataset

This dataset classifies the images of animals using their text attributes. The dataset is originally

from (81). Along with the images, a SIFT bag of word descriptors were provided in the original

dataset. PCA was used to reduce dimensionality to 202, and 2000 samples were picked. We ob-

tained this pre-processed dataset from (73).

For the above datasets obtained from Kang et al, the dataset was randomly divided into 70% train-

ing and 30% testing. Each of the mentioned algorithms were trained on the training and tested on

the remaining portion of the dataset. The entire experiment was repeated 100 times. All the algo-

rithms were trained on the same sets of training and testing samples each time. The summary of

the datasets can be obtained from table 4.2, and the performance on these datasets is summarized

on Tables 4.3 and 4.4.

Toxicity dataset

The number of new chemicals that are being created each year is large, and it is becoming more

and more difficult to obtain the full toxicological profile of each of these chemicals. One way to

combat this problem is to be able to rule out some of these chemicals for traditional toxicity testing

by the use of computational and in vitro methods. For this purpose, the environmental protection

agency (EPA) provided a dataset that maps in vitro tests performed on different chemical with the

toxicological effect of those chemicals on various endpoints on rats, mouse and rabbit. We picked

8 endpoints related to rat and mouse livers for this test. We divided the dataset into 70% training

and 30% testing. The experiment was repeated 100 times. The results of toxicity dataset are also

reported in Tables 4.3 and 4.4.

Since the tasks were built by binarizing a multi class problem, the datasets are heavily biased.

For example, in the digit recognition datasets, the task of identifying each digit only has one tenth

64

Table 4.2: Dataset description

Dataset # of tasks # of features # of samples
small-MNIST 10 87 2,000

USPS 10 64 2,000
Animal 20 202 2,000
MNIST 10 784 60,000
Toxicity 8 988 245

Table 4.3: Performance comparison of our algorithm, MTLC0, with other algorithms. The evalua-
tion criteria reported below is the fraction of misclassified instances. The bold values represent the
significantly best performances with p-values less than 0.01.

Algorithm MTLF Kang MNEP cCMTL CASO MTLC0
small-MNIST 0.0354 0.0414 0.9519 0.1292 0.1976 0.0356

USPS 0.0295 0.0395 0.8942 0.1276 0.1577 0.0289
Animal 0.3221 0.0541 1.0000 0.0886 0.0981 0.0509
MNIST 0.6736 0.2405 0.1124 0.1035 0.0649 0.0410
Toxicity 0.6143 0.3586 0.4633 0.4254 0.4123 0.4173

of positive samples and the rest are negative. Hence, we evaluate the performance by measuring

the error, which is the fraction of misclassified samples, and the F1 score. F1 score is evaluated by

F1score =
2× prec× recall

prec+ recall

where,

prec =
t p

t p+ f p

recall =
t p

t p+ f n

Here, prec is the precision, tp is true positive, fp is false positive and fn is false negative. Some-

times, the classifiers classified all the classes as negative. Since, the dataset is biased, the error

is still low in this case, however, the value of precision and hence the value of f1-score is not a

number. In such cases, the f1-score used was zero. Also, if the algorithm failed to converge, the

parameters became not a number. In these cases also, the error was 1 and the F1 score was zero. A

65

Table 4.4: Performance comparison of our algorithm, MTLC0, with other algorithms. The follow-
ing table reports the F1-score on the tested algorithms. The bold values represent the significantly
best performances with p-values less than 0.01.

Algorithm MTLF Kang MNEP cCMTL CASO MTLC0
small-MNIST 0.8173 0.7543 0.0392 0.6235 0.4282 0.8141

USPS 0.8512 0.7702 0.0917 0.6185 0.6178 0.8519
Animal 0.0025 0.0409 0 0.1263 0.1483 0.0980
MNIST 0.2783 0.3397 0.4195 0.5499 0.6991 0.7961
Toxicity 0.2690 0.3421 0.2640 0.4786 0.4620 0.4427

note that should be made here is that the high values of error and low values of f1-score in MNEP

algorithm are actually true and are a result of the convergence problems of this algorithm on some

of the datasets.

As can be seen from Tables 4.1, 4.3 and 4.4, our algorithm performs significantly better than other

state of the art methods. The F1-score for smallMNIST data and the error on toxicity data are the

only places where MTLC0 did not give the best performance. However, MTLC0 does show the

best performance for the error and F1-score of small-MNIST and toxicity data respectively. For all

the other datasets, our algorithm does perform the best results. Next, we show that the time taken

by our algorithm is significantly lower than other algorithms.

4.3.3 Computational Complexity

The time requirement of MTLC0 is significantly lower than Kang et al’s algorithm. For example,

when we kept the number of features to a constant value of 100, and set the number of samples

equal to 50, 100 and 150, the average time over 10 runs for MTLC0 algorithm was 2.8666, 2.7874

and 2.8229 seconds respectively. However, for Kang’s algorithm, the average time for same num-

ber of features and samples was 8.4807, 8.3499 and 8.3634 seconds. Moreover, the complexity

of our algorithm is linear with respect to number of tasks, samples and features. However, the

66

Figure 4.2: Average time required for MTLC0 and Kang’s algorithm with varying number of
features

0 100 200 300 400 5000

200

400

600

800

1000

Features

Ti
m

e
(S

ec
on

ds
)

Kang
MTLC0

complexity of Kang’s algorithm is proportional to square of the number of features. To illustrate

this difference, we run a simple experiment to show the difference of time behavior between our

method and Kang’s method with varying number of features. We increment the number of fea-

tures by steps of 10 and keep the number of samples to be constant as 100, and measure the time

for execution of each algorithm ten times. Figure 4.2 shows the average time taken to run these

algorithms for varying number of features. All the above experiments are performed on the same

computing facility. It is pretty clear that the rate of increase in time with the number of samples

for Kang’s method is much higher than our method .

4.4 Conclusion

In the current work, we present a new multitask feature learning algorithm for identification and

training of groups of related tasks together. Present algorithm uses a modified spike and slab prior,

which is a bayesian equivalent of L0 norm for both grouping of tasks and feature selection. We

67

applied our algorithm on several real world data sets and showed that our algorithm performs sig-

nificantly better than leading state of the art algorithms. We also showed that the time requirement

for our algorithm is lower than other state of the art algorithms.

The next question that we need to answer is if we can model the task relationships in lifelong

learning framework as well. The major challenge in lifelong learning is that we do not know

which tasks are going to be faced by the learner during its lifetime. Therefore, the task relationship

model needs to be capable of incremental learning. For this purpose, we propose learning functions

to divide the task space or the model space. The tasks which fall into the same region are said to be

in the same group and regularized together. Partitioning task space has not been explored earlier.

However, this divide and rule strategy has been extensively used in the input space. Therefore,

let us first review the existing literature which considers partitioning the input space. In the later

chapters, we present our algorithms for lifelong learning.

68

Chapter 5

Literature Survey on Learning local models

by Partitioning Input Space

There are a lot of algorithms for supervised learning that divide the input space into regions and

build a local model for each region. Learning local models for each region is a powerful technique

to learn complex functions using simple representations. The most popular of such algorithms are

decision trees. However, there have been other algorithms that build more subtle boundaries for

the local learners such as nearest neighbor classifiers and adaboost. In this chapter, let us go over

the literature that deal with the divide and conquer strategies in machine learning history.

5.1 Decision Trees

The decision trees are one of the most popular supervised learning methods primarily used for clas-

sification. The great popularity of the use of decision trees comes from their simplistic design, ease

of training, intuitiveness and scalability. Decision trees have been studied in multiple disciplines

such as machine learning, data mining, statistics, decision theory etc (119). Many times multiple

decision trees are bagged together to create an ensemble of decision trees as in random forest.

The most straight forward description of a decision tree algorithms is that they are a kind of clas-

69

sification method who have a structure of a tree consisting of nodes and leaves. At each node, an

attribute is chosen and the training instances are partitioned according to the value of that attribute.

At the leaves of the trees, all the instances in a particular leaf are assigned a single label. Decision

trees can be univariate or multivariate based on the number of attributes used for splitting at each

nodes.

5.1.1 Univariate Splitting Criteria

The splitting criteria of the decision trees are based on a number of different metrics but can be

broadly classified into two main measures (108), (119) based on information theory and gini index.

5.1.1.1 Information Theory

Concepts and measures from information theory have been widely used in establishing the splitting

criteria for decision trees (114), (116), (82), (72). According to information theory, entropy is

defined as the measure of uncertainty about the source of information. It can take any value xi ∀i ∈

{1,2...k}, and P(xi) is the probability of observing the value xi. In terms of a decision tree, let T

be a set of samples X , and the samples X may belong to a class Ci ∀i ∈ {1,2...k}. The probability

of a sample to belong in class Ci is given by P(Ci) =
f req(Ci,X)
|T | , where f req(Ci,X) is the number

of samples in class Ci, and |T | is the number of samples in dataset T . Then, the entropy would be

defined by

H(X) =−
k

∑
i=1

P(Ci)logP(Ci) (5.1)

The change in the entropy after a split is performed is called information gain and is a widely used

metric for choosing the best attribute for splitting. Let a sample X consist of attributes x1,x2...xd ,

and let the value of attribute xa, for any value of a between 1 and d, belong to set v, then the

70

information gain is defined as

I = H(X)−∑
j∈v

|Tj|
|T |

H(X j) (5.2)

Here, X j are all the samples where the value of attribute xa is j, and |Tj| is the number of such

samples. The attribute which maximizes the value of I is chosen for the split.

There are some variations of the information gain that have also been explored. The criteria men-

tioned above are biased towards attributes with larger domain. Therefore, normalized information

gain is also proposed commonly known as gain ratio (115). Likelihood ratio chi squared criteria is

used to measure the statistical significance of the information gain. Jun et al (72) proposed using

the base of the logarithm as the number of successors that node will have.

5.1.1.2 Gini Index

Gini index is another popular metric used for deciding the input criteria (137), (Breiman et al.),

(50). Using the same notation from section 5.1.1.1, the gini index for a given dataset is defined as

gini(X) = 1−
k

∑
i=1

P(Ci) (5.3)

Here, P(Ci) is the ratio of the frequency of class Ci occurring to the total number of samples. If an

attribute, xa is chosen for splitting, then the gini gain is given by

G = gini(X)−∑
j∈v

|Tj|
|T |

gini(X j) (5.4)

The notation remains same as section 5.1.1.1. The attribute which minimizes the gini index is

chosen as the attribute for splitting. Gini index has issues with handling large number of classes.

In these cases, binary criteria such as twoing criteria is used (Breiman et al.). When the classi-

fication task are binary, both gini index and twoing criteria are the same. A similar measure is

71

Distinct Class based Splitting Measure (DCSM) (25) which creates a partition by giving weight to

the number of distinct classes in a partition as well.

There are other measures for the splitting criteria as well. Kolmogorov-Smirnov (48), (120), (146),

Orthogonality Criteria (44), misclassification rates and Liklihood Ratio Chi-Squared Statistics (8)

are just to name a few. However, impurity measures such as information gain and gini index

continue to be the most popular choice for univariate splitting criteria in decision trees.

5.1.2 Multivariate Splitting Criteria

The decision tree model had this major limitation that only one variable was chosen for splitting at

each node. Thus, all the partitions were axis-parallel. Later, researchers started studying the com-

bination of attributes to create the partition at each node. Although this makes the decision tree

model more flexible, the increase in the complexity of training process is increased significantly as

well.

There are multiple ways in which multivariate splits can be determined. One of the methods is to

use feature construction method where attributes are added iteratively at each node. There are mul-

tiple approaches to add the new features. For example, linear discriminant function may be used

(58), or projecting the data on first principal component (48), (49), or identification of promising

direction to partition data by building multiple trees and utilizing the centroids of promising pairs

of leaf nodes (67).

One popular algorithm in this area is CART-LC (Classification and Regression Trees with Lin-

ear Combinations) (Breiman et al.). For each nodes, the weights of the linear combination of the

attributes are computed at each node using locally optimum values. The authors also consider

backward deletion strategies to eliminate unnecessary features at each node and increase the inter-

pretability.

72

OC1 is another popular algorithm which considers multivariate partitions at each node (101). It

is very similar to CART-LC, except that the authors realize that CART-LC algorithm is too deter-

ministic and are more likely to get stuck in local minima. They perturb their algorithm by using

multiple restarts for the optimization problem and randomly perturb the hyperplanes generated for

partitioning in random directions to escape the local minima.

There are multiple other strategies used for oblique trees. Many authors have considered using

different metric than the impurity criteria for optimizing the splits such as maximizing separability

of the subsets (126), or maximizing the margin between separating hyperplanes and the data (11).

Other authors have considered evolutionary algorithms (77), (78) and (16) for finding the optimal

decision tree.

All the decision trees described above are mainly for classification. As we observe, after parti-

tioning the input space, decision trees assign a single label to each leaf. Thus, each local region in

a decision tree is assigned a most simplistic model, which is a uniform label to all the samples in

the leaf.

5.2 Regression Trees

Regression trees are an extension of decision tree for regression. Just like in classification trees,

regression trees also assign a single value to each leaf node. Since the true outcome of the samples

is continuous, the mean of all the samples that reach the leaf is the value that is assigned to the

leaf usually. In most cases, the decision trees described above can be easily extended to form

regression trees. The most popular regression tree which is used is CART (Breiman et al.), (137).

Usually in regression trees, the node splitting criteria is minimization of mean squared error rather

73

than the impurity criteria described in decision trees. Although the recursive partitioning of space

captures the structure of the data which other global linear regressor models fail to capture, the

major limitations of these trees is the introduction of bias because of dividing the output space into

bins.

5.3 Hybrid Trees

Hybrid trees are attempts to connect worlds of decision trees and global regression models. A

hybrid tree is basically a decision tree in which another model such as perceptron is used at the

leaves. Hybrid trees are better suited for regression problem than regression trees, however, these

can be used for classification as well. These trees use local model for each region created in the

true sense. Quinlan et al proposed these trees under the name model trees (117). There are multiple

examples of hybrid trees in literature. For example, (144) uses local kernel model at each leaf. In

(39), authors use nearest neighbor model with the single attribute decision tree. (152) and (65) also

integrate nearest neighbor and trees for regression and classification purposes.

5.4 Local Models

There are other approaches which aim at building local models in the input region. These methods

do not draw a clear partition line in the input space. However, these models do assign a local model

to each sample depending on the position of the sample in the input space.

One example of these kinds of models are nearest neighbor (30; 32; 121). For each test case,

the nearest neighbor finds the samples from the training data which lies closest to the test case, and

assign the output value based on the selected training samples. Many times a local model is also

assigned to each region (57; 75). As we can see here, the input region is not formally partitioned,

however, very small regions are formed around each training samples which dictate the value as-

signed to any sample which fall in these regions.

74

The nearest neighbor approach uses distance to measure the nearest neighbors (53; 80). Local-

ized kernel models use kernel functions such as radial basis function and find the nearest samples

using the metric defined by the kernel function.

Another example of the local models is adaboost (47; 38). Adaboost actually builds a series of

classifiers where each successive classifier weighs the misclassified samples from previous classi-

fiers more heavily. Because of the multiple classifiers, local regions are formed around the training

samples and the samples falling into these regions get the same class. In the earlier days of machine

learning, researchers also looked at exemplar based classification where series of hyper-rectangles

were created around samples to explicitly mark regions with same labels.

5.5 Global Formulations

All the methods mentioned above either do not explicitly create partition, or creating partition and

local models are two separate processes. That is, first the ideal partitions are developed, and then

local models are trained for each region. Recently, the researchers have explored global formu-

lations of creating both the partitions and develop the local models as part of single formulation

(104; 150). Thus, the partitions are created in a manner which provide maximum benefit to the

performance of local models.

In our research, we use the global formulations to partition the model space instead of the input

space. Our procedure is reported in the following chapters.

75

Chapter 6

Lifelong Multitask Learning using Local

Partition Models

Lifelong multitask learning is a learning mechanism having the ability to entertain new tasks which

may be encountered during the training process. Lifelong multitask learning has the potential of

finding applications in many autonomous machines that have the capability to learn and predict

any unforeseen tasks during its lifetime (41; 122). The examples of such applications include but

are not limited to stock price prediction where new companies keep entering the market, online

image annotation where the machine may encounter a different element in image which it has not

seen before, or protein-chemical interactions where new chemicals are constantly being produced.

Lifelong multitask learning was studied initially by Eaton and Ruvolo (41). They also developed

another algorithm for incorporating active task selection in life long learning framework (122; 123).

In both of these methods, the authors learn a projection of the data on a lower dimensional space.

The primary drawback of these approaches is that the entire basis matrix needs to be updated each

time a new batch of samples are streamed.

We propose using the underlying task structural relationships to transfer knowledge among the

76

related tasks in a lifelong learning setting. The most popular method of insuring that knowledge is

transferred only between the related tasks is to learn the task clusters, and the most popular method

of learning these task clusters is the use of k-means clustering. However, learning task clusters in

an online setting is difficult, because each time a new task comes in, it is assigned to one of the

existing clusters even if the task is an outlier with respect to the existing tasks. Thus, the outlier

task shares knowledge with the unrelated tasks. One way to overcome this limitation is to use

hierarchical task relationship structure, where if a new outlier task arrives at a leaf node, the node

has the flexibility to split without effecting any of the existing clusters.

If we know the underlying hierarchical structure of the task relationship model, each time we

encounter a new task, we can utilize this structure to update only those parameters which are rele-

vant to the nodes a given task belongs to. However, using task relationships in lifelong multitask

learning is a very challenging problem. It is not possible to know the structural relationship be-

tween the tasks beforehand. Any unknown task can arrive at any point during the training process.

The same reason implies that learning this structure of the tasks is also challenging. The task

structure is dynamically changing and growing with each new oncoming task. With a dynamic

structure, the traditional methods of modeling structure using a fixed positive semidefinite matrix

is highly expensive. To learn the hierarchical structure in a lifelong setting, we propose learning

functions in the task space based on which task relationships may be established. More specifi-

cally, we propose learning a series of linear partition functions which hierarchically partition the

task space. Learning linear functions to partition the task space instead of group membership re-

sults in a convex formulation which is easy to solve. For each region thus created, we learn a local

model in the task space. These local models allow the transfer of already learnt information to

the new incoming task. For each batch of new incoming samples, only the models relevant to the

region the given task falls into needs to be updated. Thus, using this framework, the number of

linear models which need to be updated at a given time is as low as the depth of the tree structure

which is usually logarithmic with respect to the number of clusters. Thus, this formulation both

77

saves time and improves efficiency.

In this paper, our major contribution is to propose a solution for finding multi-level partitioning

functions to divide the task space in an online learning framework. We also present a convex opti-

mization framework for learning local models in task space based on given partition functions. It

is observed that the optimization function for learning local models in the task space has the same

form as matrix factorization problem and using this observation we present an online solution to

find the local models for each partition. The major advantage of learning this method is its appli-

cability in lifelong multitask learning as this algorithm handles new upcoming tasks in an efficient

manner. From this point onwards, we refer to our algorithm as “LiLeLopam" (LIfelong LEarning

with LOcal PArtition Models).

The rest of the paper is organized as follows. First, in section 6.1, we discuss about the related

work. Next we present the algorithmic design of our framework, followed by the empirical results.

At the end, we conclude by presenting a summary statement.

6.1 Related Work

There are two major aspects of this paper, lifelong multitask learning and task relationship model-

ing. The first part of the study, lifelong multitask learning is a relatively new field and the related

work for lifelong multitask learning is described in the introduction section. Another topic which is

closely related to lifelong multitask learning is online multitask learning. The second aspect of the

study is task relationship modeling. In this section, we will briefly go over some of the literature

in online multitask learning and task relationship modeling which bears closest resemblance with

our work.

There has been a number of recent publications that focus on online multitask learning (110; 92;

78

105). In (36; 37) , the authors present a framework for training multiple tasks in parallel using

a shared regularization function in an online setting. In (157), the authors include feature selec-

tion with online multitask learning as well. (110) develops a kernel based method whereas (22)

develops a perceptron based method for online multitask learning. The current online learning al-

gorithms only consider the scenario when all the tasks are given from the starting point. However,

this may not be always the case and the learning agent may be required to adapt itself to the newly

encountered tasks.

Multitask learning with task relationship modeling has also been explored in multiple publications.

The structural relationships in tasks has usually been explored in the form of clusters (73; 79; 99),

hierarchical structures (52; 18; 35) or directed and undirected graphical structures (28; 46). The

structures may be given or need to be learnt. These algorithms usually use a fixed sized structure

representation to learn the task relationship model. Most commonly used choice of structure rep-

resentation is defined by a fixed size matrix (7; 168). In, (125), the authors developed an algorithm

for learning the task relationship modeling in an online setting. They also use fixed sized TxT

dimensional matrix to represent the task relationships. The major drawback of these methods is

that the structure representation of the tasks is not flexible to grow in size. Thus, it is difficult to

introduce new tasks amidst the training process.

Incorporation of the task relationship model is especially important in lifelong learning setting be-

cause there is no previous knowledge about the kind of tasks that arrive during the training process.

Training unrelated tasks together can degrade the performance further (79). In (79), the authors

use a set of basis vectors and their coefficients to represent the task relationship in a sub dimen-

sional space. The authors assumed that the coefficients are sparse, which results in the modeling of

overlapping clusters in the task. This is a reasonably efficient way to model the task relationships

which does not grow with the number of tasks, and thus, was utilized by (41) to model the task

relationships in lifelong setting. However, a major inefficiency in this method is that all the basis

79

vectors need to be updated when new samples arrive.

In this paper, we aim to propose an efficient method for lifelong multitask learning which learns

and utilizes the task relationship model during the training process. In order to achieve this, we

learn a series of functions which hierarchically partition the task space and use the knowledge of

these functions to regularize the related tasks together. Therefore, this method can also be viewed

as an efficient method for multi-level task clustering. To the best of our knowledge, learning series

of partition functions and region specific models in lifelong multitask setting has not been explored

earlier and we are the first people to propose a solution for this problem.

6.2 Methodology

In a lifelong multitask learning setting, we assume that the lifelong learning system comes across a

sequence of samples which may belong to any task t. The incoming task t can either belong to the

pool of the tasks that the system has already seen, or can belong to a new task. Thus, the essential

challenge in designing lifelong learning systems is that these systems have to be online in terms of

both the samples and the tasks. In this section, we present an outline of our proposed methodology

to learn the task relationships in a lifelong multitask learning setting.

6.2.1 Notation Used

We assume that the dataset Z is composed of xi,t and yi,t , where i = 1 . . .nt , nt is the number of

samples in task t, and t = 1 . . .T . Here, T is the total number of tasks. Since, in this paper, we are

studying the case of lifelong multitask learning, the values of T and nt are not known before hand

and keeps on increasing with each set of arriving samples.

In the dataset Z, each entry of xi,t is a d dimensional vector of real numbers. The value yi,t is

80

a scalar which belongs to real number, ℜ, in the case of regression problems and belongs to {0,1}

in the case of classification problems. The objective of this algorithm is to find a vector wt such

that yi,t = xi,twt for linear regression problems and yi,t =σ(xi,twt) for classification problems where

σ(z) represents the logistic function.

Throughout the text, we represent the matrices by capital letters, the vectors by bold faced lower

case letters and scalar by normal font lower case letters. Thus, suppose a matrix is given by X . Its

ith row will be represented by xi,:, jth column will be represented by x:, j, and the single value at ith

row and jth column will be given by xi, j.

6.2.2 Background

In this current study, we learn the partition of the task space and use these partitions to regulate the

information transferred from previously learnt tasks to the new task. We find our algorithm bears

close resemblance to an algorithm recently developed by Oiwa and Fujimaki (104). Therefore,

before we describe our algorithm, we would like to give a brief overview of Partition-wise Linear

Models. We also give a brief overview of regularized multitask learning before we proceed to the

description of our model.

6.2.2.1 Partition-wise Linear Models

A recent study by Oiwa and Fujimaki, Partition-wise Linear Models (104), is related to partitioning

the input space to learn localized linear regression model. Since our approach is similar to Oiwa’s

approach, but in the task space, we would like to briefly introduce Oiwa’s algorithm here. From

here onwards, let us refer to this algorithm as PWLM.

In PWLM, the authors aim to divide the input space into partitions and associate each partition

81

with a linear model. Thus, the output predicted for each sample is a combination of the predictions

produced by the linear models associated with all the partitions the sample falls in. In this paper,

the authors only assign one linear model to each partition line and that model applies to only one

side of the partition. Let us consider an example in which the input sample x = [x1,x2] lies in a

two dimensional space and we need to map it to a output real number, y. Suppose, the first parti-

tion A1 marks the region x1 > 1. Thus, the linear model a1 will be applied to all the samples for

which x1 > 1. Now, let us assume that the second partition a2 is for x1 > 0 and the third parti-

tion a3 corresponds to x2 < 2. Then the linear models applied to sample x = [3,4] will be a1 and

a2, as x1 = 3 is greater than both 1 and 0, but x2 = 4 is not less than 2. However, all three mod-

els will be applied to x= [3,0] as in this sample, x1 is greater than both 1 and 0, and x2 is less than 2.

A mathematical formulation for the above problem is depicted as

ỹi = g(xi) = xia0 +
P

∑
p=1

fp(xi)xiap (6.1)

Here, a0,a1...aP are the linear models associated with each of the P partitions, fp(xi) consists of

values either 1 and 0 indicating which partitions are active for each sample xi. Thus, in order to

obtain the values of partition models a0, a1 ... aP, the following equation needs to be solved

min
a, f (x)

n

∑
i=1

l(yi,g(xi)) (6.2)

where l is any loss function and the total number of samples are n. For regression problems,

squared loss function may be chosen. The authors also add sparsity constraint on each linear model

associated with each partition and bound the maximum number of partitions a sample can fall in.

Thus, the above model can be obtained by solving the following optimization problem.

82

min
a, f (x)

n

∑
i=1

l(yi,g(xi)) s.t. ∑
p∈1...P

I(ap 6= 0)≤ µp

and ‖ap‖0 ≤ µ0 ∀p (6.3)

The authors assume that the partitions are given beforehand. For their experiment studies, the

authors divide the input space into grids at the quartiles of the data across each dimension and get

the values of fp(x) for their formulation. Then the authors approximate the above function with its

closest convex approximate and present a solution for the above problem.

In the current study, our formulation may seem similar to the PWLM approach at first. How-

ever, we would like to mention that our algorithm is significantly different from PWLM because

we are partitioning the task space as opposed to the input space as done in PWLM. We also do

not use the grid formation approach for creating the partitions by using quantiles of the data in

the task space because this is an online algorithm and the entire data is not available to us. Even

though the convex formulation of our method may seem similar to PWLM once the partitions are

given, we also cannot use the solution proposed in PWLM as we are interested in online learning

implementation of the problem.

6.2.2.2 Regularized Multitask Learning

Multitask learning framework can be regularized in multiple ways. Here, we mainly use the

method as described by Evgeniou and Pontil (43). In this paper, the authors assume that the weight

vector wt for each task t is composed of two parts w0 and vt . The weight vector w0 is common for

all the tasks, whereas, the vector vt is different for each task. Thus,

wt = w0 + vt (6.4)

83

To find the values of w0 and vt , the following problem is solved

min
w0,vt

T

∑
t=1

n

∑
i=1

l(yi,t ,xi,twt)+λ1
1
T

T

∑
t=1
‖vt‖2 +λ2‖w0‖2 (6.5)

where l is the loss function used and λ1 and λ2 are regularization constant used. In this paper,

the authors also show that the above problem is equivalent to solving for

min
w0,vt

T

∑
t=1

n

∑
i=1

l(yi,t ,xi,twt)+ρ1

T

∑
t=1
‖wt‖2

+ρ2

T

∑
t=1

∥∥∥∥∥wt−
1
T

T

∑
s=1
‖ws‖2

∥∥∥∥∥
2

(6.6)

in the case of hinge loss. Therefore, (i) if we partition the task space into regions, and (ii)

assume that the parameters associated with each task is equal to the sum of a local model associated

with the region and a task specific model, we ascertain that the task parameters lies close to the

mean of the task parameters in that region. Our goal in this paper is to learn the local models

associated with each region in task space in a lifelong learning setting. With this note, we conclude

the description of the background information and proceed to the description of the formulation

relevant to the current paper.

6.2.3 Basic Approach

Our basic approach for modeling the task relationship model is to build a partition tree in the task

space. The main objective of this partition tree in the task space would be to learn regions in which

the tasks might benefit by transferring information learnt among each other. Then we use the de-

veloped partition tree to learn local linear models in the task space. More specifically, for each

partition created, we learn two local models, one for each side of the partition. We assume that the

task parameters are given by the sum of all the local models a task is associated with and a task

84

specific model.

A cartoon of our problem formulation is represented in Figure 6.1. In the picture, each task is

depicted by black dots with the gray circle around it representing the uncertainty associated with

the location of each task. The partitions are denoted as dashed red lines. The roman numeral shows

the partition number, and the capital alphabets A, B, C and D label each region. As can be seen

by the picture, partition I is associated with two models U1 and U2. Model U1 is the local model

for the left hand side of the partition, while U2 is for the right hand side of the partition. The two

regions created by partition I are further divided by partitions II and III. The two models associated

with partition II are U3 and U4, and with partition III are U5 and U6. Therefore, we obtain four

regions A, B, C and D. Given this scenario, the model for any task in region in A will be given

by U1 +U5 + vt as this task lies on left side of partition I and top of partition III. Similarly, the

task model for any task in region D will be depicted as U2 +U4 + vt . We now present a formal

description of our problem.

In this paper, we mainly focus on lifelong multitask learning for both linear classification and

regression tasks. Assuming a parametric linear model, let the vector wt be the parameter vector

associated with each task. Thus, we need to estimate the vector wt , such that yt = xi,t ·wt + ε for

any given task t. Here ε is the white noise. The estimate of each wt can be obtained by minimizing

the loss function plus the penalizing term.

wt = min
wt

n

∑
i=1

l(xt,i,wt ,yt,i)+ ||wt ||2 (6.7)

Here, l(xt,i,wt ,yt,i) represents the loss function and can be chosen in accordance with the task at

hand. For linear regression, the choice of the loss function is usually squared loss while for classi-

fication, it is a sigmoid function.

85

Figure 6.1: Task Partition Model. The partitions are depicted as dashed red lines. Each partition is
associated with two local linear models, one for each side of the partition. The task model is given
as the sum of all the local models associated with the task and the task specific model.

I
II

III

A

D C

B
U1

U2

U6
U5

U4

U3

U1+U5

U1+U6

U2+U4

U2+U3

86

One way to transfer information among tasks in multitask learning problem is to regularize the

task parameters together. However, when regularizing all the tasks together, we assume that all the

tasks are related to each other. This assumption in lifelong learning scenario may not hold. For

this reason, we propose partitioning the task space and learn the local models in each region. Let

us initially assume that the partition rules in the task space are given to us beforehand. Later, we

will present a way to divide the task space into regions by creating hierarchical partitioning.

Let the rules whether a task t belongs to a given partition p be given by function fp(θt), where

θt are parameters used to characterize task t by just the observed samples. Thus, fp is a function

which maps a real number vector of dimensionality d to a binary number which can take the value

of either zero or one, fp : ℜd → {0,1}. Then, let us assume that the task parameters for task t are

given by

wt = ∑
p=0...P

fp(θt)up + vt (6.8)

Here, P are the maximum number of partitions into which the task space is divided, and up

represents the linear model associated with the region p. vt is the task parameters associated with

specific task t. The value of p = 0 represents a global partition which applies to the entire task

space. Thus, the value of f0(θt) is 1 for all values of θt and u0 is a global model which applies to

all the tasks.

87

The log likelihood function for this multitask learning scenario is given by

L(yt ,g(xt)) =
T

∑
t=1

1
nt

nt

∑
i=1

l(yi,t ,wtxi,t)

=
T

∑
t=1

1
nt

nt

∑
i=1

l

(
yi,t ,vtxi,t + ∑

p=0...P
fp(θt)upxi,t

)
(6.9)

l(yi,t ,wtxi,t) is the loss function used. We further go ahead and consider that the local linear

models are sparse. Thus, we would need to minimize

E = min
vt ,up ∀t,p

T

∑
t=1

1
nt

nt

∑
i=1

l

(
yi,t ,vtxi,t + ∑

p=0...P
fp(θt)upxi,t

)

s.t. ‖vt‖0 ≤ µ and
D

∑
d=1
‖ud,p‖0 ≤ ν ∀p (6.10)

Therefore, we consider a sparse model to be associated with each region and the task specific

parameters are also sparse. The above model is highly non-convex, and thus, it would be very hard

to find the global optimal solution for the above problem. Therefore, we consider the use of convex

relaxation of the above problem and use L1 norm and L∞ norm instead of L0 norm. Using convex

relaxation of the above formulation and Lagrange multipliers, we get

E = min
vt ,up ∀t,p

T

∑
t=1

1
nt

nt

∑
i=1

l

(
yi,t ,vtxi,t + ∑

p=0...P
fp(θt)upxi,t

)

+λ1

T

∑
t=1
‖vt‖1 +λ2

P

∑
p=1

D

∑
d=1
‖ud,p‖∞ (6.11)

= min
vt ,up ∀t,p

L(yt ,g(xt))+λ1

T

∑
t=1
‖vt‖1

+λ2

P

∑
p=1

D

∑
d=1
‖ud,p‖∞

It is quite interesting to see that the above model becomes very similar to the PWLM model

even though the PWLM model partitions the input space and build a local model for all the samples

88

that fall in a given region. Here, we are building a local model for all the tasks falling in the same

region. However, there are two major problem for using the PWLM solution to solve the above

problem. First, the solution of the above problem will depend on all the previous training data.

Secondly, the solution provided by PWLM to the above problem is for batch processing in terms

of both samples and tasks and cannot be used in the lifelong learning scenario.

To deal with the first problem, we use the similar formulation as used in (41). We approxi-

mate the equation 6.11 by replacing the term L(yt ,g(xt)) by the second order taylor expansion

of 1
nt

∑
nt
i=1 l(yi,t ,g(xi,t ;θ)) around θ = θt . The value of θ t is obtained by minimizing single task

learning problem without any regularization.

Thus, θt = minθ
1
nt

∑
nt
i=1 l(yi,t ,g(xi,t ;θ)). Therefore, equation 6.11 can be written as

E = min
vt ,up ∀t,p

T

∑
t=1

1
nt
‖θt−

(
∑

p=0...P
fp(θt)up + vt

)
‖Dt

+λ1

T

∑
t=1
‖vt‖1 +λ2

P

∑
p=1

D

∑
d=1
‖ud,p‖∞ (6.12)

Here,

Dt =
1
2

∇
2
θ ,θ

1
nt

nt

∑
i=1

l(yi,t ,g(xi,t ;θ))|θ=θt

‖V‖A =V T AV

The constant terms have been removed from the expansion term as they will not effect the

minimization. Also, note that for now, we consider the values of fp(θt) provided to us. Now,

there are two problems ahead of us, (i) solving the above equations for given values of the partition

function and (ii) developing a method to find the values of the partition function.

Let us first consider the problem of finding the solution for the above optimization equation.

Suppose, we have a given matrix F consisting of values of the function fp(θt). Thus, the value of

89

each element of F , fi, j is the value of fp(θt) for ith partition and jth task. Also, let U be a matrix

with each column consisting of the values of up. Let Θ be matrix consisting of the values of θt as

each column and V be a matrix of vt . In this case, the above equation can be written as

E =‖Θ−UF−V‖Dt +λ1

T

∑
t=1
‖vt‖1 +λ2

P

∑
p=1

D

∑
d=1
‖ud,p‖∞ (6.13)

It is interesting to note that the above problem is same as matrix factorization problem where

we need to estimate the basis vectors U and the error vector V for a given set of coefficients F .

Therefore, we need to solve for columns of matrix U and the vectors vt . Recently, Shen, Xu et al.

(127) published a study on online solution to maximum norm problem. We base our solution for

the above problem on this study.

Now, returning to our formulation of equation 6.12, we use alternating optimization method to

solve for vt and up ∀p. With each coming task t, we will first update the vector vt , and then we

update the vectors up. In order to find the value of vector vt , we first need to obtain the value

of θ t and Dt . These values depend on whether the problem at hand is a regression problem or a

classification problem. For regression problems, these values can be computed using

θ t = (XT
t Xt)

−1XT
t yt

Dt = XT
t Xt (6.14)

For logistic regression, there are many algorithms available to solve for θ t . The value of Dt is

given by

90

Dt =
nt

∑
i=1

σ(xi,tθ t)(1−σ(xi,tθ t))xT
i,txi,t (6.15)

Both θt and Dt can be updated in an online fashion if the samples arrive for an existing task.

Having obtained these values, the value of vt is updated using

vt = min
vt

1
nt

∥∥∥∥∥θt−

(
∑

p=0...P
fp(θt)up + vt

)∥∥∥∥∥
Dt

+‖vt‖1 (6.16)

where all the up and fp(θt) are fixed. Any optimization technique may be used for this step.

Then, the values of matrix U are updated using block coordinate descent algorithm. For this, first

step is to gather two accumulation matrices A and B as

Ak = Ak−1 + f :(θ t) f :(θ t)
T

Bk = Bk−1 +(θ t− vt) f :(θ t) (6.17)

where f : is a p dimensional vector consisting of the values of function fp(θt) for each partition for

the current task t, and k is the update number.

Let G be a matrix consisting of subgradient of G = 1
2δ‖U‖1,∞. The subgradient is computed

according to (127). Then, the pth column of U , up, is given by

up = up−
1

ap,p
(Uap−bp +λ2gp) (6.18)

It is worth noting here, that the vector f : will be sparse with the maximum number of non-zero

elements equal to the depth of the hierarchical partition tree created. Thus, the updates that are

needed to be made in matrix U will only be necessary for the columns for which f : is non-zero.

91

The summary of the algorithm is provided in Algorithm 2.

Algorithm 2 LileLopam: Lifelong Learning with Local Partition Models

Require: Parameters λ1, λ2 and p
U ← 0d,p, A← 0p,p, B← 0d,p
while MoreDataArriving() do

if isNewTask() then
t← t +1

else
Ak = Ak− f :(θ t) f :(θ t)

T

Bk = Bk− (θ t− vt) f :(θ t)
end if
Update the value of θ t and D using Equations 6.14 or 6.15
f :(θ t) = UpdatePartitionTree()
Update task specific model vt using Equation 6.16
Update A and B matrices using Equations 6.17
Update Local Models for respective regions up using Equation 6.18

end while
return Partition Functions f p(θ t), Local Models for each region U , Task specific model vt

Let us now present a solution using which the task space may be partitioned in an hierarchical

way. We first present the process of how to form the partition function at a given node. Then, we

show how we create the partition tree and obtain values of all the f p(θt).

6.2.4 Creating Each Partition in Task Space

Here, we focus on the problem of partitioning a given region into two parts using a linear separa-

tion. Let us assume that the equation of the linear separation line is given as f T
θ , where we need

to estimate the linear coefficients f . We estimate the linear partition function such that the two

groups that the tasks are divided into minimize the penalized log likelihood function. Therefore,

in order to find the linear separator among the tasks, we minimize the following function

92

Q = min
f ,θ̂

T

∑
t=1

1
nt

nt

∑
i=1

l(θ̂ t ,xi,t ,yi,t)

+
T

∑
t=1

∥∥∥∥∥σ(f T
θ̂t)θ̂ t−

1
nR

T

∑
s=1

σ(f T
θ̂s)θ̂ s

∥∥∥∥∥
2

+
T

∑
t=1

∥∥∥∥∥(1−σ(f T
θ̂t))θ̂ t−

1
nL

T

∑
s=1

(1−σ(f T
θ̂s))θ̂ s

∥∥∥∥∥
2

(6.19)

Here, σ(f T
θ̂t) is the logistic function. which divides the tasks into two parts. Thus, the tasks

are assigned a label of 0 or 1 and are regularized to be close to the mean of all the tasks bearing the

same labels. Let us assume that the mean of tasks having the label 0 is given by M0 and the mean

of the tasks having the label 1 be M1. Then, the above equation may be written as

Q = min
f ,θ̂

T

∑
t=1

1
nt

nt

∑
i=1

l(θ̂ t ,xi,t ,yi,t)+
T

∑
t=1

∥∥σ(f T
θ̂ t)θ̂ t−M0

∥∥
2

+
T

∑
t=1

∥∥(1−σ(f T
θ̂ t))θ̂ t−M1

∥∥
2 (6.20)

Applying the same trick as in equation 6.12 and use taylor series expansion around θt , we get

Q = min
f ,θ̂ t

T

∑
t=1
‖θ̂ t−θ t‖Dt +

T

∑
t=1

∥∥σ(f T
θ̂t)θ̂ t−M0

∥∥
2

+
T

∑
t=1

∥∥(1−σ(f T
θ̂ t))θ̂ t−M1

∥∥
2 (6.21)

We assume that the optimum value of θ̂ t will be near θ t for each task t. Then, the first term

approaches the value of zero and we are left with the last two terms. We use the online gradient

descent algorithm to find the optimum value of f . The values of M0 and M1 are updated accord-

ingly. To first find the update functions for f , we need to find the gradient of equation 6.21 first.

93

The gradient of the above equation is given as

∇ f Q =
T

∑
t=1

2
(
(σ(f T

θt)θt−M0)
T

θt
)

θt
exp(− f T

θt)

(1+ exp(− f T
θt)

−2
(
(1−σ(f T

θt))θt−M1)
T

θt
)

θt
exp(− f T

θt)

(1+ exp(− f T
θt)

(6.22)

Let, σ(f T
θ) be denoted by z. Then, the above equation can be written as

∇ f Q =
T

∑
t=1

2(zθ −M0)θ
T

θz(1− z)

−2((1− z)θ −M1)θ
T

θz(1− z)

=
T

∑
t=1

2((2zθt−M0 +M1−θt)
T

θt)θ tz(1− z) (6.23)

Therefore, we update the linear function coefficients f at kth step as

f = f −α∇ f Q

= f −α

T

∑
t=1

((2zθt−M0 +M1−θt)
T

θt)θ tz(1− z) (6.24)

where α is a predefined step function. Thus, for each new incoming task, the partition function

may be updated as

f k = f k−1−α((2zθt−M0 +M1−θt)
T

θt)θ tz(1− z) (6.25)

Now, the question remains what values should we use for M0 and M1. The values of M0 and

M1 are also updated according to the updates of f k.

94

In order to update the values of M0 and M1, we start with the value of M0 have the value of first task

θ1 and M1 have the value of second task M2. The value of f can be initially set as (M0−M1)/2.

Then, after the arrival of each task, and making each update of f , the values of M0 and M1 can be

updated accordingly. More specifically, if a new task θ t gets assigned a label 0 at a given partition,

then

Mnew
0 =

n0Mold
0 +θ t

n0 +1
(6.26)

where n0 is the number of tasks assigned the label 0. Similarly, the values of M1 may be updated.

If a task changes labels in between the process, then that task may be removed from one mean and

added to the other mean.

This algorithm is summarized in Algorithm 3. We now go on to explain how we create the partition

tree using this partition scheme.

Algorithm 3 UpdateAPartition
if isUpdatedTaskinCurrentRegion() then

f = f +α((2zθ
old
t −M0 +M1−θ

old
t)T θ

old
t)θ old

t z(1− z)
end if
Update function f using Equation 6.25
Update the values of M0 and M1
Update task membership indicator vector f p(θ t)

6.2.5 Creation of Partition Tree

The idea of a partition tree is creating an hierarchical way of dividing the task space. We hope

with this process, we can hopefully identify the task hierarchical relationships and incorporate this

relationship in our lifelong multitask learning model.

In order to create the partition tree, we create a series of partition functions. As the samples

95

related to the new tasks arrive, the first partition function f 1 is updated using equation 6.25. Using

the updated function, it is decided whether a label 0 or a label 1 is assigned to the new task. At

this point, we want to recall that our local partition model assumes only one model per partition.

Therefore, based on function f 1, we create another function f 2 which is equal to − f 1. Therefore,

the first local model will be common for all the tasks labeled 1 and the second local model will be

common for all the tasks labeled 0.

Next, based on the label assigned to the new task, the next level function is updated. If the as-

signed label is 0, then say only function f 3 will need to be updated, else function f 5 will need to

be updated and so on. We again assume that the function f 4 takes the value of − f 3 and f 6 takes

the value of − f 5 for the same reason. We continue this process till a maximum of 2P partition

functions is reached. We assume that the value of P is user defined. Thus, a maximum of log2(P)

partition functions need to be updated for each incoming task.

It is possible that during the updates of partition function, some of the previous learnt tasks near the

margin may change membership. However, there is no need to update the location of these tasks

at this moment as the current local models are trained to include these tasks currently. Therefore,

the region marked by these partite functions are allowed to have some crossovers in the vicinity of

the the margin. When new samples belonging to these tasks will arrive, the task memberships and

the local models for these tasks are updated accordingly.

Initially, when the number of tasks are very less than P, then it is not possible to create P partition

functions. In that case, we just create the number of partitions that are possible. The summary of

the algorithm is given in Algorithm 4.

96

Algorithm 4 UpdatePartitionTree

Require: Updated value of θ t and old value of θ
old
t if it exists

l← 1
while l < P do

if NumberOfTasks(Region l) = 0 then
Ml

0← θ t
return

end if
if NumberOfTasks(Region l) = 1 then

Ml
1← θ t

fl ← (M0−M1)/2
return

end if
UpdateAPartition(θ t , fl , θ

old
t)

l← NextChildNode
end while

6.3 Experimental Study

In this paper, we develop a lifelong learning algorithm to learn the task structure as a series of

functions and we assume a local model for tasks at each level of hierarchy. Here, we describe the

performance of our algorithm and show that our algorithm achieves better results than other state

of the art methods on many real world datasets.

In this paper, we compare our method to the following methods:

Batch MTL: We compare our model with model developed by Kumar et al (79). In this method,

the authors learn the linear basis and the task specific coefficients. The framework of this problem

is similar to matrix factorization problem except there is no need to compute the error coefficient.

Since, the formulation of our problem has the same format as matrix factorization problem, we

use this batch multitask learning method to compare our results. The code was provided by the

authors, we would like to thank them.

ELLA: This is the lifelong multitask learning algorithm developed by Paul Ruvolo and Eric Eaton.

97

Paul Ruvolo and Eric Eaton assume that the tasks are related in the sub dimensional space and rep-

resent each task parameters as the sum of the product of a set of basis vectors and the coefficient

of the basis vectors. The set of basis vectors are common across all tasks and the coefficients are

unique for each task. Because the coefficients are sparse, they sometimes capture the overlapping

cluster structure of the tasks. We thank the authors for providing us their code.

TREE: This is a baseline method. Here, we use online hierarchical clustering to learn the tree

structure of the task and use the mean at each node as the common model of the region. Therefore,

we skip the learning of local model in each region.

STL: We compare our model with single task learning. Here, we use bayesian online linear re-

gression and classification method on each task to evaluate the error.

LileLopam: The method described in this paper.

6.3.1 Dataset Used

We test the performance of our model on a number of real world datasets as described below.

SMALL-MNIST dataset: This dataset is downloaded from Kang’s webpage (73). It is a pre-

processed version of the MNIST dataset for handwritten digit recognition. In this dataset, the

principle components of the the images were computed and only the top 64 components were used

to describe each image. Therefore, the dimensionality of each sample was reduced to 64. Only

2000 samples were provided. If we combine all the tasks, we get 20,000 samples. The labels

consisted of values ranging from 0 to 9. Again, the binarization of the tasks was used to get 10

tasks, where each task represents the identification of each digit.

USPS dataset: This dataset is again downloaded from Kang’s webpage (73) and is another digit

98

Table 6.1: Summary of each of the dataset including the dimensionality.

Dataset # of tasks # of features # of samples
SMALL-MNIST 10 87 20,000

USPS 10 64 20,000
LANDMINE 29 9 14,820

STOCK Market 25 16 24,452

recognition dataset. The preprocessing used in this dataset is similar to the process used in

SMALL-MNIST dataset. However, in this dataset, the authors used 87 features. Again, the ten

tasks were created by assigning each task the job of identifying a single digit. There were 2000

samples in this dataset as well. Again, combining all the tasks, we get a total of 20,000 samples.

Stock Market dataset: This is a dataset which we compiled ourselves. We randomly pick 25

different companies. These companies are from various domains such as financial market, tech-

nology, software, oil and gas industries and pharmacy. We collect their weekly stock market prices

from December 1994 to December 2014. The target was to predict the current stock market price

based on the price history in the past sixteen weeks. All the information was collected from Ya-

hoo’s financial services website. There are twenty-five tasks in this dataset and 24,452 samples.

The number of dimension is 16.

Landmine Detection: In this dataset, the goal is to detect if a land mine is present at a given

location based on the radar images. The original dataset is from (156). However, we obtained

the dataset from (41). It was included in the code we obtained from the authors. There were

nine features which were extracted from the radar images using four moment-based features, three

correlation-based features, one energy-ratio feature and one spatial variance feature. The problem

is modeled as a binary classification problem with twenty nine tasks, nine features. There are a

total of 14,820 samples. The summary of the dataset is provided in Table 6.1.

99

Table 6.2: The performance comparison of our method with other methods. The mean accuracies
are reported here. LileLopam produced accuracies closest to the Batch MTL.

Dataset Batch MTL STL TREE ELLA LileLopam
SMALL-MNIST 0.9141 0.5608 0.5608 0.8174 0.9000

± 0.0031 ± 0.0292 ± 0.0297 ± 0.0651 ± 0.001
USPS 0.9060 0.4976 0.4999 0.7881 0.8656

± 0.0038 ± 0.0190 ± 0.0207 ± 0.0906 ± 0.0098
LANDMINE 0.8107 0.5535 0.5658 0.6515 0.7739

± 0.0525 ± 0.0173 ± 0.0181 ± 0.0313 ± 0.0321
STOCK Market 0.9418 0.9356 0.9372 0.9399 0.9410

± 0.0018 ± 0.0019 ± 0.0018 ± 0.0022 ± 0.0018

Table 6.3: The average time taken in seconds to train plus predict from Batch MTL model and the
speed up achieved for other models when compared with Batch MTL along with their standard
deviations.

Dataset Batch MTL (sec) ELLA (Speedup) TREE (Speedup) LilePopam (Speedup)
SMALL-MNIST 108.8608 ± 4.7735 62.75 ± 11.32 16.71 ± 0.81 128.23 ± 10.18

USPS 98.4760 ± 2.0013 82.28 ± 16.04 58.98 ± 3.79 193.55 ± 15.97
LANDMINE 74.5201 ± 0.8796 178.40 ± 15.78 27.29 ± 5.21 245.63 ± 29.48

STOCK Market 22.3230 ± 10.5685 96.26 ± 47.43 0.1591 ± 0.0766 246.18 ± 117.73

Figure 6.2: The decrease in the overall error as a function of position in task sequence. The red
line indicates best exponential fitting curve.

100

6.3.2 Model Evaluation Procedure

For each of the tested models we use five fold cross validation to find the optimum parameters

for each of the datasets. If there are a multiple parameters which need to be provided, we use a

greedy approach to find the optimum parameters. We fix all the parameters and change the value of

one parameter at a time and find the value of that specific parameter which gives the lowest cross

validation error. Having found the optimum parameters, we fix these parameters for the specific

model and dataset tuple for the remaining portion of the experiment study.

For Batch MTL and ELLA, we choose the value of the number of basis from a pool of {2, 4,

6, 8, 10}. The value of λ and µ were chosen from {exp(-12), exp(-8), exp(-4), exp(0), exp(4)}.

We picked these pool of parameters so that they are around the default values provided by the

authors in their code. The maximum number of iterations used in Batch MTL was 100. In ELLA,

there were two additional number of parameters to be optimized, the ridge term for single task

learner and µ1, the L2 regularization penalty for single task specific component. The value of ridge

term were also chosen from {exp(-12), exp(-8), exp(-4), exp(0), exp(4)}. The value of infinity was

added to the pool for selecting µ1 according to the author’s guidelines.

In the TREE method, bayesian linear regression and classification methods were used as single

class learner as described in (14). The single task learners were clustered hierarchically and the

mean of all the tasks at the ancestors node were applied as the prior for each of the tasks. There

were three parameters which needed to be optimized, the variance of noise in the data α , the prior

variance term β and the decay term which is multiplied to the prior as we move further up in the

hierarchical tree. The values of α and β were chosen from {0.001, 0.01, 0.1 0, 1, 10, 100}, and the

value of decay factor was chosen from {1, 2, 5, 10, 20}. The same values of α and β were used

for online single task learning (STL).

In the current method, LileLopam, three parameters needed to be optimized, number of parti-

101

tion, λ1 and λ2. The number of partitions was picked from {3, 5, 7, 9, 10, 12}, and the values of

λ1 and λ2 were chosen from {0.001, 0.01, 0.1, 0, 0.1, 10, 100}.

Using the parameters obtained from the above method, we continue to test the performance of

the models. For testing the performance, we randomly select around fifty percent of the samples

from each task from each dataset for training. Thus, 100 samples were randomly from each task

from stock data, 1000 samples from each task for SMALL-MNIST and USPS data, and 300 sam-

ples from each task were used from the landline data for training. The remaining samples were

used for testing. We randomly sample the dataset 100 times and train each of the model. The data

division into train and test was consistent across all the models. The order of the tasks were also

randomized each time. The values reported are the average accuracies. For classification tasks,

the accuracy is obtained using the fraction of the correct predictions made. For regression, we

define the accuracy as 1− nrmse, where nrmse is the normalized root mean squared error. Thus,

the higher number represents better performance for all the models. We also report the standard

deviation of the accuracies. The summary of the results is provided in Table 6.2. It can be seen

from Table 6.2 that our method performs better than ELLA and other online methods and has the

performance closest to the batch multitask learning algorithm.

We also measure the total time needed to train and predict from each of the models for each of

the 100 splits of the data. These experiments were conducted on the same Intel(R) Xeon(TM)

3.2 GHz Linux Machines. The average time required is also reported with the standard deviation.

We do not compare time with online STL as this method does not have a good performance. The

summary of the time taken are reported in Table 6.3. As can be observed in Table 6.3, the current

method is faster than ELLA and achieves a speed of orders of magnitude over the batch MTL

method.

In this algorithm, we do not update the task member function until new samples arrive. To show

102

that this does not result in negative transfer of information, we randomize the tasks 100 times and

randomly separate the data into training and testing. We measure the overall error of the tasks

introduced on the test data after each new task is introduced to the model. We plot these errors

as function of the position of the tasks. As can be seen in Figure 6.2, the errors decrease after

introduction of each new task.

6.4 Conclusion

In this paper, we proposed an algorithm to learn the task structure relationships using functions

rather than fixed sized matrices. The current algorithm learns the partition functions for dividing

the task space into hierarchical partitioning using linear functions. These partitions were used to

learn local models for each region along with the task specific models. We formulated the problem

of learning local models with given partitions to have the same mathematical formation as matrix

factorization problem, and devise an online solution for the problem. It was observed, that the

current algorithm has a better performance and speed than the current state of the art lifelong

multitask learning methods. In the next algorithms, we go a step further and propose that the task

relationship modeling part of lifelong learning can be formulated as a supervised learning problem.

103

Chapter 7

Learning Task Grouping using Supervised

Task Space Partitioning in Lifelong

Multitask Learning

Lifelong multitask learning is a multitask learning framework where a learning agent transfers the

knowledge from the already learnt tasks to the new tasks which it encounters for learning during

its lifetime. Lifelong multitask learning can be viewed as a subset of online multitask learning

problem where the framework is online in terms of the tasks. The inspiration for lifelong multitask

learning comes from the natural process used by human beings for learning (142), as they have a

natural tendency to transfer the knowledge from previously learnt tasks to new tasks. The lifelong

multitask learning setting is of great utility for many real world problems where one needs to make

predictions related to new tasks regularly. Examples of such applications may arise in online image

annotation where new images are constantly being added by the users and new objects that need

to be identified are repeatedly added to the list, or in the autonomous robots sent on exploratory

mission in outer space or under water to explore and identify a new surrounding.

Lifelong multitask learning has been primarily studied by Eaton et al (41), where the authors

104

develop an algorithm which can handle new tasks as they are faced by the learning agent during its

lifetime of training. The authors assume that all the tasks are related in a sub-dimensional space

which can be represented by a set of basis vectors. The authors aim to learn these basis vectors and

the coefficients of these basis vectors for each task. This work has been extended by the authors

in multiple ways as in (3; 124; 122; 123). These methods only suffer from one inefficiency, and

that is entire basis vector needs to updated when a new task arrives. Also, this method cannot do

feature selection while learning the tasks.

In this paper, we wish to focus on learning the structure of the tasks in lifelong multitask learning

along with feature selection. Learning the task structure is especially hard in lifelong learning

setting because there is no previous knowledge of the nature of new tasks that may be arriving.

Thus, the task learning mechanism needs to be dynamic and able to evolve with changing nature

of the task sets. For this purpose, we propose learning partition functions rather than task structure

matrix for learning the task relationships. In this paper, we learn the task clusters by imposing a

series of partitions on the task space in a supervised manner. We also assume that the similar tasks

depend on the similar features. Therefore, we incorporate feature selection in our model as well.

Our main contribution in this paper is to present a global formulation for learning both parti-

tion models in task space and the task models using novel supervised learning formulation. This

formulation partitions the task space such that the similar tasks remain in the same region using

supervised learning and enforces similar tasks to depend on similar features. Learning both the

task parameters and relationships is done in a supervised manner. We present the solution of this

formulation using dual averaging technique for regularized stochastic gradient methods to solve

for the sparsity constraints.

105

7.1 Related Work

This paper is essentially a framework for multitask learning in a lifelong learning framework. The

core idea of the present approach is to learn both the task relationships and task models using su-

pervised learning in a lifelong learning framework.

The literature related to lifelong learning is very limited. The idea of lifelong learning has been

known since 1996 when Thrun (142; 143) introduced the concept first in the machine learning

community. Since then multiple authors have contributed to lifelong multitask learning in super-

vised setting (133; 132; 136). These papers are about methods to incorporate previously learnt

neural network so that the knowledge learnt may be used for future tasks and do not deal with

identifying the task relationships. Recently, Eaton et al (41) published a study on lifelong mul-

titask learning which assumes that the tasks are related in a sub dimensional latent space. This

study is based on (79). The authors learn the basis of the latent space in which the tasks are related

along with the coefficients of the basis for each tasks. Since the authors assume sparse coefficients,

an implicit task relationship is assumed in their algorithm, but the explicit task relationships may

not be identified using this algorithm. Even though learning task relationships is a new concept in

lifelong learning, it has been much explored in multitask learning algorithms.

In the traditional multitask learning algorithms, where all the tasks were initially assumed to be re-

lated to each other (43; 9; 4; 5), researchers observed that training unrelated tasks together may lead

to negative transfer of information, which results in degradation of generalization error (73; 79).

To avoid this problem, researchers investigated learning task relationships such that the informa-

tion is only transferred among the related tasks. The most common approach for solving this

problem is to learn a positive semi-definite matrix to represent the task relationships (167; 45).

This positive semidefinite matrix is often the task covariance matrix or task kernel matrix (167), or

Laplacian matrix or indicator matrix mapping each task to other related tasks (45). Although task

relationships are learnt using these fixed sized matrices, there are inherent problems in extending

106

this method to lifelong learning. When a new task arrives, the knowledge learnt regarding existing

task relationships is not directly transferrable to the new task. Also, each time a new task arrives,

a new row and column needs to be added to task relationship matrix which is computationally

expensive. Another method for learning task relationships is to use k nearest neighbors to identify

the task clusters (68; 171; 170). These methods use an unsupervised step to learn the task relation-

ships. Some authors assume that the tasks are related in sub dimensional latent space, and learn

the relationships in that latent space (79; 107; 54). This method does not learn the implicit task

relationships in the physical space. Kang et al learn an indicator matrix whose element in ith row

and jth column takes the value 1 if the task in row i belongs to the group in column j otherwise

0. This algorithm does an explicit task relationship modeling, and does feature selection as well

while learning the task parameters and thus bears closest resemblance to our algorithm. However,

the information learnt regarding task relationships is non-transferable to the new tasks. All of the

above algorithms learn the task relationship using an unsupervised step.

In this paper, we propose using supervised learning to learn explicit task relationship modeling.

More specifically, we learn a global formulation for learning partition functions in a supervised

fashion to group the tasks together and then learn the task models. Learning functions in the task

space which divide the tasks into clusters are easier to learn in terms of optimization, and they

provide an easy transfer of information from previously learnt task to the new task. Using a global

formulation to learn the task clusters and task model ensures maximum coupling between the two

learning assignments ensuring higher accuracy.

7.2 Methodology

In this paper, we aim to learn a model for lifelong multitask learning scenario which learns the

cluster of tasks as well as does feature selection. Before we give a description of our model, we

would first like to describe the notation used, followed by a brief overview of our work. Proceeding

107

which, we provide the details of our algorithm.

7.2.1 Notation Used

Throughout this text, we represent the matrices by capital letter, the vectors by bold faced lower-

case letters and scalar values by lowercase letters. Given a matrix X , its jth column is represented

by x∗, j. For the same matrix X , the element at the ith row and jth column is xi, j.

The dataset being provided is represented by D, which consists of the input features xi,t and the

output label yi,t , where i ranges from 1...Nt and t ranges from 1...T . Nt represents the number of

samples in task t and T represents the total number of tasks. In a lifelong multitask setting, the

values of Nt and T are undetermined.

The given dataset D consists of 2-tuple elements, where each entry xi,t belongs to a d dimen-

sional real valued vector, xi,t ∈ Rd . The values of outputs depend on the tasks. For regression

problems, the values of yi,t is a real number, yi,t ∈ R. For classification problems, yi,t is either 1 or

0, yi,t ∈ {0,1}. We assume linear models for prediction throughout. Thus, the objective of the al-

gorithm would be to learn the vector wt , where ŷi,t = xi,twt for linear regression and ŷi,t = σ(xi,twt)

for classification problem. σ represents any monotonic function.

Given the above framework, the average empirical risk for all the tasks in this case may be given

as

R =
1
T

T

∑
t=1

1
Nt

Nt

∑
i=1

l(wt ,xi,t ,yi,t) (7.1)

=
1
T

T

∑
t=1

l(wt ,D)

108

Here, l is the loss function used. Usually, l belongs to the sigmoid family of functions for

classification problems and squared loss function for regression problems. If we minimize the

above equation to solve for wt , then the tasks are not regularized and the objective is same as

learning each task separately. Therefore, for multitask learning problems, a regularization term is

added to the empirical risk to ensure that the tasks lie close together.

R =
1
T

T

∑
t=1

l(wt ,D)+λF(W) (7.2)

where λ is a regularization constant, and F is a positive monotonic function of W . The common

choices of F are L1 norm, L2 norm and trace norm.

7.2.2 Supervised Partitioning of the Task Space

In most multitask learning formulations, all the tasks are regularized together under the assumption

that they are related similarly. There are multiple applications where all the tasks are not related

to each other and it is beneficial to identify the related tasks. The existing multitask learning ap-

proaches alternate between unsupervised step and supervised step to learn the task relationships

and task models. We introduce a new method to learn both the task relationships and task models

in a supervised manner which may also be used in lifelong multitask setting.

In this paper, we propose learning partition functions to divide the task space into regions. As

a result, the tasks in the same region are effectively clustered together. There are multiple benefits

of using partition functions instead of indicator matrices to learn task relationships. Functions are

easier to update in an online setting as opposed to indicator matrices. Therefore, learning functions

results in more adaptive algorithm to lifelong learning setting. Second benefit of using function is

that it is easier to transfer knowledge of previously learnt tasks to the new incoming tasks. The

learnt function can easily provide rules for clustering the new incoming task. Third benefit lies in

109

the fact that learning a discrete valued binary matrix using optimization techniques is much harder

than learning a real valued continuous function. Therefore, we present this novel idea of learning

partition functions in a supervised manner to cluster the task.

Let us first describe our algorithm for including a single partition function, and then we later

extend the idea for creating multiple partition functions for creating r groups of tasks. Let us as-

sume a function g(X ,y) which divides the task space or the model space into two regions, region 1

and region 2. Also, we assume that the task parameters, wt can be given as either u1 +vt or u2 +vt

depending on if the given task belongs to the region 1 or 2. Here, u1 is the common model for all

the tasks which lie in region 1, and u2 is the model common for all the tasks in region 2. vt are task

specific models.

In this case, the empirical loss function can be written as

R =min
1
T

T

∑
t=1

I(g(θt(Xt ,yt)) = 0)
1
Nt

Nt

∑
i=1

l(u1,vt ,xi,t ,yi,t)

+
1
T

T

∑
t=1

I(g(θt(Xt ,yt)) = 1)
1
Nt

Nt

∑
i=1

l(u2,vt ,xi,t ,yi,t) (7.3)

Here, I is the indicator function and θt is a function that maps the input data Xt to the output

yt for a given task t, and thus, can be seen as the representative of the task t. Henceforth, we will

represent g(θt(Xt ,yt)) as simply g. The function l(u1,vt ,xi,t ,yi,t) is the loss function and measures

the mean squared error between xi,t(u1 + vt) and yi,t . For classification problems, the loss function

may belong to either zero-one loss function or sigmoidal family of functions.

Also, let us assume

110

l1
t =

1
Nt

Nt

∑
i=1

l(u1,vt ,xi,t ,yi,t)

and

l2
t =

1
Nt

Nt

∑
i=1

l(u2,vt ,xi,t ,yi,t)

Thus, the empirical risk described in equation 7.3 is

R =min
1
T

T

∑
t=1

I(g = 0)l1
t +

1
T

T

∑
t=1

I(g = 1)l2
t

(7.4)

Now, let us consider the case where there are more than one partitions of the task space. Since,

each partition function divides the task space into two regions, we adapt the framework of using

a series of partition functions which recursively partition the task space hierarchically. In other

words, we establish a tree structure in the task space with a partition function gk at each node k of

the tree. The function gk divides the region at that node of the task space into two more regions.

There is no partition function at the leaf nodes. Thus, each leaf node is associated with a region

of the task space which is not partitioned any further. For each leaf node r, there exists a common

task specific model ur which is common for all the tasks that belong in the region associated with

leaf node r. As mentioned before, there also exists task specific model vt , thus, the task model is

given by wt = ur + vt , assuming task t belongs to region or leaf node r.

Let the left child of kth node of the partition tree be kL and right node be kR. For any node k,

the value of empirical loss for a task t would then be

111

Lk
t =


I(gk = 0)LkL

t + I(gk = 1)LkR
t if k /∈ leaf node

lk
t if k ∈ leaf node

(7.5)

This formulation of the loss function is recursive. Thus, the loss function of the entire tree may

be given by the loss function of the root node. The loss function of the root node is the sum of

the total loss of its left child and right child. The left child loss and right child loss may further be

broken down in the same way till we reach the leaf node. Thus, the loss function of the root node is

same as the loss functions of the sum of leaf nodes. Therefore, if the root node is 1, the cumulative

empirical risk is

R =
1
T

T

∑
t=1

L1
t (7.6)

Additionally, we also impose the models to be sparse. That is, the common model in region

r, ur should only select some features relevant to all the tasks in the region. Similarly, the task

specific models, vt are assumed to be sparse too. Sparsity assumption is especially useful for tasks

with large dimensionality. The empirical loss function is regularized using L1 norm on regional

and task specific models. Thus, the empirical loss function may be written as

R =
1
T

T

∑
t=1

L1
t +λ1

1
T

T

∑
t=1
‖vt‖1 +λ2

pl

∑
r=1
‖ur‖1 (7.7)

assuming there are pl leaf nodes. We need to solve for the values of ur, vt and gk. Henceforth,

we will refer to all gk as partition functions, ur as region specific models and vt as task specific

model. We use alternative minimization to solve for each of the values. First, let us discuss how we

can solve for a single partition function. Later, we will show how the same framework is extended

112

for multiple partition functions.

7.2.2.1 Finding Single Partition Function

To find the solution for g for a single partition case, let us assume that the values of u1, u2 and vt is

fixed. Then, the risk function is

R = min
1
T

T

∑
t=1

I(g = 0)l1
t +

1
T

T

∑
t=1

I(g = 1)l2
t (7.8)

The regularization terms need not be included as the values of u1, u2 and vt are fixed. For the

same reason, the values of l1
t and l2

t can be easily computed.

Theorem 1. For a fixed values of vectors u1 and u2, the solution for finding the optimal partition

function g which minimizes Equation 7.8 is same as finding the optimal classifier which minimizes

the following empirical loss

1
T

T

∑
t=1
|l1

t − l2
t |I(g = (l1

t < l2
t)) (7.9)

Proof. Let us define a set S consisting of all the indices t, where l1
t < l2

t . Also let us define operator

>, such that for a > b, the result is 1 if a is greater than b and 0 otherwise. We can rewrite equation

7.8 as.

113

R =
1
T

[
∑
t∈S

I(g = 0)l1
t +∑

t /∈S
I(g = 0)l1

t

+∑
t∈S

I(g = 1)l2
t +∑

t /∈S
I(g = 1)l2

t

]
=

1
T

[
∑
t∈S

I(g = (l1
t > l2

t))l
1
t +∑

t /∈S
I(g = (l1

t < l2
t))l

1
t

+∑
t∈S

I(g = (l1
t < l2

t))l
2
t +∑

t /∈S
I(g = (l1

t > l2
t))l

2
t

]

Since, for all t ∈ S, the value of l1
t > l2

t is 0. Similar argument holds for other terms. Rearranging

114

terms,

R =
1
T

[
∑
t∈S

I(g = (l1
t > l2

t))l
1
t +∑

t /∈S
I(g = (l1

t > l2
t))l

2
t

+∑
t∈S

I(g = (l1
t < l2

t))l
2
t +∑

t /∈S
I(g = (l1

t < l2
t))l

1
t

]
=

1
T

[T

∑
t=1

I(g = (l1
t > l2

t))min(l1
t , l

2
t)

+
T

∑
t=1

I(g = (l1
t < l2

t))max(l1
t , l

2
t)
]

=
1
T

[T

∑
t=1

I(g 6= (l1
t < l2

t))min(l1
t , l

2
t)

+
T

∑
t=1

I(g = (l1
t < l2

t))max(l1
t , l

2
t)
]

=
1
T

[T

∑
t=1

I(g = (l1
t < l2

t))max(l1
t , l

2
t)

+
T

∑
t=1

[
1− I(g = (l1

t < l2
t))
]

min(l1
t , l

2
t)
]

=
1
T

[T

∑
t=1

I(g = (l1
t < l2

t))max(l1
t , l

2
t)

−
T

∑
t=1

I(g = (l1
t < l2

t))min(l1
t , l

2
t)+

T

∑
t=1

min(l1
t , l

2
t)
]

(7.10)

Here, the last term is a constant and does not depend on function g. Minimization of R with

respect to g will not be effected by the third term, and hence, can be removed. Thus, empirical risk

may be given by

115

R =
1
T

T

∑
t=1

I(g = (l1
t < l2

t))(max(l1
t , l

2
t)−min(l1

t , l
2
t))

=
1
T

T

∑
t=1
|l1

t − l2
t |I(g = (l1

t < l2
t)) (7.11)

From theorem 1, it can be deduced that the optimal partition of the task space is obtained when

each task is given the label 0, if model in partition 0 gives a lower error, and 1, if model in partition

1 gives a lower error. The empirical risk is then the weighted error of classifying these tasks, with

weights for each error given as |l1
t − l2

t |. The partition function in the task space, g, can be obtained

by using any cost sensitive classifier. Here, we assume that the classifier g is a linear classifier. The

value of θt used here is the single task learners obtained from solving logistic regression or linear

regression problem. The details for θt are provided in section 7.2.2.3.

To compute the weights of linear classifier g, we use the cost sensitive classifier developed by

Zhang and Garcia (164). For each incoming task t, the classifier g may be updated as

gt = gt−1 + τt label θt (7.12)

Here, the value of label is the label given to task t according to previous paragraph. The value of

τt is defined as

τ
′
t =

1− label gT
t−1θt

θ T
t θt

τt =


0 if τ ′t ≤ 0

τ ′t if 0 < τ ′t ≤ αct

αct if τ ′t > αct

(7.13)

116

Here, α is a constant determining the size of step, and ct is the weight associated with each task.

Here, the value of ct is |l1
t − l2

t |.

7.2.2.2 Multiregion-Partitioned Task Space

The above theorem can be easily extended to a multi-region partitioned task space as well. For a

given node k in the partition tree and a given task t, the empirical loss and the global empirical risk

is given in equations 7.5 and 7.7.

In order to solve for each of the gk for fixed task and model specific models in equation 7.7,

we use alternate minimization. Thus, for each task, we first fix all the ur and gk for k in all nodes of

the partition tree. Then, we pick one partition function gk at a time and solve for that. Therefore,

for each node k not in leaf node, the values of gk is given by minimizing

gk = min
1
T

T

∑
t=1

I(gk = 0)LkL
t + I(gk = 1)LkR

t (7.14)

Minimizing the above equation is same as minimizing

gk = min− 1
T

T

∑
t=1
|LkL

t −LkR
t |I(gk = (LkL

t > LkR
t) (7.15)

This is a direct extension of Theorem 1. It is also easy to infer from theorem 1 that the value of LkL
t

is the smallest value of lrkL
t where rkL represents all the leaf nodes under the left child of node k.

Similarly, LkR
t is the minimum value of lrkR

t . Since, all other partition functions and region models

are fixed, the value of LkL
t and LkR

t may easily be computed. Thus, the value of each partition

function may be computed using any online cost sensitive classifier. After updating the partition

functions, we solve for each ur and vt as described in the next section.

117

7.2.2.3 Predicting Regional and Task Specific Models

Given the value of the partition function, we know the region a given task belongs to. Let this

region be depicted by r, and the indices of all tasks in this region belong to set S. The equation 7.7

then reduces to

R =
1
T ∑

t∈S

1
Nt

Nt

∑
i=1

L(xi,t(ur + vt),yi,t)

+λ1
1
T ∑

t∈S
‖vt‖1 +λ2‖ur‖1 (7.16)

The major inefficiency in the above equation is that it depends on all the samples from previous

data owing to the inner summation in the equation. In order to overcome this efficiency, we use

the trick used in (41). We expand the inner summation term, 1
Nt

∑
Nt
i=1 L(xi,t(ur + vt),yi,t), around

θt = min 1
Nt

∑
Nt
i=1 L(f (xi,t ,θ),yi,t). In other words, θt is the single task learner of task t. Using

second order Taylor series expansion and ignoring all the constant terms, we get

R =
1
T ∑

t∈S
‖θt− (ur + vt)‖Dt +λ1

1
T ∑

t∈S
‖vt‖1 +λ2‖ur‖1 (7.17)

where,

Dt = ∇θ ,θ
1
Nt

Nt

∑
i=1

L(f (xi,t ,θ),yi,t)|θ=θt

θt = min
1
Nt

Nt

∑
i=1

L(f (xi,t ,θ),yi,t)

and,‖K‖D is defined as KT DK.

We can obtain the value of θt using linear or logistic regression. The value of θt may be eas-

118

ily updated online as well.

In order to find vt and ur, we first fix ur and solve for vt . The solution for vt can be obtained

by solving the following equation

R =‖θt− (ur + vt)‖Dt +λ1‖vt‖1 (7.18)

This equation can be solved using any off the shelf algorithm for solving L1 norm regulariza-

tion.

Then, we keep the values of vt fixed, and find the value of ur. Therefore, we minimize the fol-

lowing equation

R =
1
T ∑

t∈S
‖θt− (ur + vt)‖Dt +λ2‖ur‖1 (7.19)

The above equation depends on all the tasks in the given region. In this case, using simple

stochastic gradient algorithm to find the values of ur in an online fashion may be used. However,

it is very difficult to find the sparse solution in online framework because it is hard to find summa-

tion of different values which add to zero. For this purpose, we base our solution to find ur on Lin

Xiao’s regularized dual averaging method (154).

The regularized dual averaging method updates the parameters by the average sub gradient of

the function. Here, the value of the sub gradient dt is

dt =−2(θt− vt−ur)tr(Dt) (7.20)

119

where tr(Dt) is the trace of matrix Dt . Then, the average sub gradient is computed as

d̄t =
t−1

t
d̄t−1 +

1
t

dt (7.21)

Thus, the value of ur is updated as

ur, j =


0, if ‖d̄t, j‖ ≤ λ RDA

t

−
√

t
γ

(
d̄t, j−λ RDA

t sign(d̄t, j)
)

otherwise
(7.22)

The value of λ RDA
t = λ2+

ρ√
t and γ and ρ are regularizing parameters, ur, j is the jth element of

vector ur.

7.2.2.4 Online Partitioning of Task Space

There is one more inefficiency that needs to be discussed. Since this algorithm is online algorithm,

the number of partitions or the size of the partition tree is not fixed. Infact, we start out with the

entire task space and partition the task space recursively as we encounter more and more tasks.

There are two conditions that still need to be discussed. When do we decide to split a given region

into two parts, and when do we stop growing the partition tree. The answer to the second question

is to choose a maximum depth of the tree and do not grow the partition tree beyond the maximum

depth. To evaluate the criteria for deciding when to split a region, we use a common intuition. All

the tasks in a given region r share the same model ur. Thus, the loss function of the models in the

same region will be in similar range. If a new task comes in, and the resulting loss lr
t of new task

t is significantly different in value than losses of other tasks, then new task t probably belongs to a

separate group. Hence, the region must be split.

120

Algorithm 5 Supervised Clustering in Lifelong Multitask Learning

Require: Data {Xt ,yt , λ1, λ2, Maximum depth of partition tree p, ρ

Initialize values of u, v and g as 0
for all incoming task t do

Get the next batch of data for task t
Update value of θt using any single task regression or classification
if Task t belongs to existing task then

s = number of task in region r where task t belongs
d̄t−1 = sd̄t− 1

t−1dt

ur, j =−
√

s−1
γ

(
d̄t−1, j−λ RDA

t sign(d̄t−1, j)
)

for all ‖d̄t, j‖ ≤ λ RDA
t

end if
Update the partition functions as in Algorithm 6
Update the values of v by minimizing equation 7.18
Update the values of u given the partition functions using equation 7.22

end for

In order to detect the significant difference in values of losses, we use theory from change point

detection. Change point detection estimation is a problem in machine learning which is associ-

ated with detecting change of events in a given signal. More specifically, we implement Shewart

Control Chart (128; 10) to decide if change point has occurred and given region needs to be split.

Here, we assume that the losses of the tasks in a given region are the samples belonging to gaussian

distribution with mean m and variance σ . The values of m and σ can easily be estimated. Let us

assume that the new task t belongs to a gaussian distribution with mean lr
t and variance σ . Then

the value of decision function for Shewhart Control Chart is given by d f = (m− lr
t)

2/(2xσ). Refer

to (10) for derivation of decision function in Shewhart Control Chart for two gaussian functions.

If d f is greater than a constant h, then the region is split.

The summary of the entire algorithm is described in Algorithm 5.

7.3 Experimental Studies

In this paper, we developed a lifelong multitask learning algorithm which learns groups of tasks

and selects a common set of features for each group of tasks. The description of the algorithm

121

Algorithm 6 Update the partition functions
Require: θt , t, h, p

if t is the first task then
Assign task t to first node of tree G which is the root
Set the root node as the leaf node as well

else
g = partition function at root node of tree G
while leaf node is not reached do

Update partition g according to equation 7.13
Set value of g as partition function of the next child of tree G

end while
if leaf node reached then

m = mean of loss of all tasks in current region
σ = variance of loss of all tasks in current region
l = loss of task t
if (m− l)2/(2∗σ) > h and maximum depth of tree p is not reached then

Split node
Place all tasks in left child
Place the task t in right child
Compute the partition function g for this node

end if
end if

end if

has been provided in the previous section. Now, we demonstrate the performance of our algorithm

with respect to other state of the art similar algorithms. We show that current algorithm performs

better than or equivalent to other methods.

The list of the different methods to which we compare our algorithm is provided below:

BatchMTL: This algorithm is a multitask learning algorithm developed by Kang et al (73). Kang

et al also developed an algorithm for clustering the tasks in multitask learning framework and us-

ing feature selection to enforce that similar tasks depend on the similar features. BatchMTL is the

closest multitask learning algorithm to our framework, except that BatchMTL is implemented in

batch setting where entire data is available. Therefore, we use Kang et al’s method to compare the

performance of our algorithm and thank Kang for providing his code.

122

Table 7.1: Summary of each of the dataset

Dataset # of tasks # of features # of samples
MNIST 10 87 20,000
USPS 10 64 20,000

LANDMINE 29 9 14,820
STOCK Market 25 16 24,452

ELLA: Efficient Lifelong Learning Algorithm, or ELLA, is a lifelong multitask learning algo-

rithm (41). In this algorithm, the authors assume that all the tasks are related in a sub dimensional

space, and learn a set of basis functions representing the sub dimensional space in which the tasks

are related. For each task, the coefficients for the basis function are also learnt. Since the coef-

ficients are assumed to be sparse, sometimes an overlapping clustering effect on the tasks is also

observed. We pick this algorithm for comparison because it is based in lifelong setting. We thank

the authors for providing us with their code.

TREE: This algorithm is a baseline method. Here, we build the clustering structure of the task

using hierarchical clustering and enforce that the tasks at each node remain close to each other by

using a gaussian prior around the mean of the tasks belonging to that node.

STL: The single task learning algorithm which we use to compare our algorithm with bayesian

online regression and classification methods as described in (14).

Current Algorithm: This is the algorithm described in current paper. In this paper, we pro-

pose a global formulation for simultaneously partitioning and learning the tasks. In this way, both

the task partitions and task parameters are learnt in a supervised setting.

123

7.3.1 Dataset Used

In order to evaluate the performance of our dataset, we use several real world datasets. The de-

scription of the dataset is provided below.

MNIST Dataset: The MNIST dataset is a collection of handwritten digits. We have downloaded

this dataset from Kang’s webpage (73). This dataset is basically a subset of the original MNIST

dataset which has already been preprocessed. In this dataset, principal component analysis was

used to extract the top 64 features of each image. The data has been provided for only 2,000 im-

age, and each image needs to be classified into one of the digits between 0 and 9. We binarize the

tasks, and thus, each task description includes identification of a single digit out of the ten digits.

Thus, there are 10 tasks, and all of the 2,000 images serve as the samples for each task. Therefore,

there are effectively 20,000 samples belonging to the total of 10 tasks. The dimensionality of each

of the samples is 64.

USPS Dataset: This dataset is also downloaded for Kang’s webpage (73). It is also a handwritten

digit dataset which has been preprocessed using a similar procedure as the MNIST dataset. In

USPS dataset, top 87 features were used. The task was again to identify the digit between 0 and 9

in the image. Again, we binarized the task, and thus, each task was to identify if an image contains

a particular digit or not. The number of samples were 2,000 for each of the 10 task, making the

effective number of samples to be 20,000, and the number of features in each sample was 87.

Stock Market Dataset: Stock market dataset is a compilation of the stock market prices which

we compiled from Yahoo’s financial services website. We selected 25 different companies from

various market domains such as oil and gas industries, computers and electronics industries, phar-

maceutical industries and finance. The weekly stock market prices from the period of December

1994 to December 2014 were obtained. Each task consisted of predicting the current stock market

prices of each of the company based on the stock market prices of past sixteen weeks. There were

124

a total of 25 tasks and 24,452 samples, and each sample having 16 features.

Landmine Detection Dataset: This dataset is about predicting the presence of a mine based on

the radar images of the location. Originally, this dataset is from (156), however, we obtain the data

from (41). The dataset was available with the software for ELLA. The radar images were prepro-

cessed and 9 features were extracted from the images, out of which 4 features were moment-based,

3 correlation-based, one energy-ratio feature and one spatial variance feature. The problem formu-

lated as binary classification having 29 tasks, nine features and 14,820 samples.

Table 7.1 presents a summary of all the datasets.

7.3.2 Evaluation Protocol

All the models selected consisted of some hyper-parameters which need to be fixed by the user.

The hyper-parameters were chosen using five fold crossvalidation on around fifty percent of the

dataset. We also use a greedy search procedure if the algorithm has multiple hyper-parameters

which need to be selected. Thus, we first fix all the hyper parameters to a constant value, and

vary one at a time. We pick the value of the hyper parameter which minimizes the cross validation

error. The values of the hyper parameters thus selected are kept constant across all the experiments.

For Kang et al’s method, the hyper parameters which needed to be selected were the number

of groups to use, the regularization coefficient for the task parameters and task correlation matrix.

The value of the number of groups were chosen from a pool of {2,3,4,5} and the values of regu-

larization parameters were picked from {10−3,10−2,10−1,1,10,100}.

In ELLA, there were five different parameters which needed to be selected, namely, the num-

ber of basis selected, the regularization parameter for the basis, λ1, regularization parameter for

sparsity constraint of the basis coefficients in each task, µ , the ridge term for single task learner,

125

λ2, and the L2 regularization component for the single task specific components, µ2. The values of

the number of basis function were chosen from a pool of {2,4,6,8,10}. The values of λ1,µ and

λ2 were chosen from the pool of {exp(-12), exp(-8), exp(-4), exp(0), exp(4)}. The value of µ2 was

also selected from the same pool except the value of infinity was added to the pool according the

author’s guidelines.

In the TREE algorithm, the online bayesian methods for classification and regression were used as

single task learners. The single task parameters were clustered using online top-down hierarchical

clustering, and the mean of the tasks at each node was applied as the prior of each task. The same

online single task learners were used for predicting online STL algorithm. There were two param-

eters used for online single task learners, the variance of the noise in the data, α , and the variance

of the zero mean gaussian prior, β . The values of α and β were chosen from the pool of {0.001,

0.01, 0.1, 0, 1, 10, 100}. The gaussian prior was again used on each node of the hierarchical struc-

ture to regularize the related tasks together. The mean of all the tasks belonging to the node was

used as the mean of the prior. The variance of the prior is chosen as the variance of the prior of

its child node times the decay factor. The decay factor was picked from the pool of {1, 2, 5, 10, 20}.

Finally, in the current algorithm, there were five parameters which needed to be selected, namely,

the maximum depth of the tree, p, regularization constant of task specific parameters, λ1, regu-

larization constant for regional classifier, λ2, the sparsity constraint, ρ and parameter dictating the

step size, γ . The number of reject classifiers was picked from {2, 3, 4, 5}, and the values of λ1, γ

and ρ were picked from {0.001, 0.01, 0.1, 1, 0, 10, 100}, and λ2 from { 10−6, 10−5,10−4,10−3 }.

For deciding when to split the nodes, we need to choose the value of constant h. The value of h

was picked from a pool of {0.05,0.1,0.15,0.2}.

126

7.3.2.1 Performance Comparison

For all the algorithms tested, datasets were randomly divided into training and testing. All the al-

gorithms were trained on the training dataset and evaluated on the testing dataset. For the MNIST

and USPS dataset, 1000 samples from each tasks were picked for training and remaining for test-

ing. Similarly, for Landmine Dataset, 300 samples and for Stock Market Dataset, 100 samples

from each task were kept for training. The splits were consistent across all the models. The hyper

parameters were fixed to the values that minimized the cross-validation error as found previously.

The division of the dataset into training and testing was repeated 100 times. The samples from

each task were fed into the algorithm one at a time and their performance on the test samples was

measured. The order of the tasks were randomized between each run. The test samples were only

used for testing the model and did not contribute to the training. The results reported are on test

dataset.

The results recorded are the average accuracy obtained from each randomization. The accuracy

for the regression task is defined as 1− nmse, where nmse is the normalized mean squared error.

For the classification tasks, we define the accuracy as the ratio of the correctly classified samples

to the total number of samples. The results are reported in Table 7.2.

As can be seen in the Table 7.2, the performance of our algorithm is superior to all other algo-

rithms, except for stock market dataset, where there is not significant difference in the performance

of our algorithm versus others.

We also compare our algorithm with a batch multitask learning algorithm. We use Kang’s method

(73), Batch MTL, as the batch multitask method as this algorithm groups the tasks explicitly into

groups and does feature selection as well. The comparison of our algorithm with Batch MTL

is provided in Table 7.3. Usually, online algorithms do not have as good performance as the

batch algorithms and batch algorithms are often viewed as the maximum performance that may be

127

Table 7.2: The performance comparison of our method with other methods. The mean accuracies
are reported here. The Current method almost always produced best accuracies. For Stock Dataset,
even though ELLA has the best performance the improvement is not statistically significant.

Dataset STL TREE ELLA Current
MNIST 0.5561 ± 0.0294 0.5691 ± 0.0286 0.8179 ± 0.0651 0.8960 ± 0.0189
USPS 0.5217 ± 0.0379 0.5269 ± 0.0399 0.8016 ± 0.0786 0.8998 ± 0.0001

LANDMINE 0.5535 ± 0.0173 0.5658 ± 0.0181 0.6515 ± 0.0313 0.7308 ± 0.0107
STOCK 0.9356 ± 0.0019 0.9372 ± 0.0018 0.9399 ± 0.0022 0.9388 ± 0.0026

Table 7.3: The performance comparison of our method with Batch Method. The mean accuracies
are reported here. The performance of batch algorithms are often seen as the maximum perfor-
mance which an online algorithm may reach. Here, the current method has a performance almost
equivalent to the Batch Multitask Learning.

Dataset Batch MTL Current
MNIST 0.9000 ± 0.0001 0.8960 ± 0.0189
USPS 0.9000 ± 0.0001 0.8998 ± 0.0001

LANDMINE 0.7181 ± 0.0103 0.7308 ± 0.0107
STOCK 0.9249 ± 0.0101 0.9388 ± 0.0026

achieved by any online algorithm. However, our algorithm performs almost as good as the Batch

MTL. In Landmine and Stock Market data, it performs even better. The reason may be that both

Landmine and Stock Market data have few number of features, and hence, do not benefit by the

feature selection.

7.3.2.2 Time comparison

The time taken for training and testing each of the model was also recorded. We present the

average time taken for each of the 100 randomizations along with the standard deviation. All

the experiments were conducted on Intel(R) Xeon(TM) 3.2 GHz Linux Machine. The time is

measured in seconds. The results are reported in Figure 7.1. Thus, it can be observed that the

current algorithm has significantly faster performance than other methods.

7.3.2.3 Comparison with online k-mean partitions

In existing literature pertaining to multitask learning algorithms, unsupervised step is used to learn

the task relationships. Most common formulation for learning task relationship is the use of k-

128

Figure 7.1: The average time taken in seconds to train plus test each algorithm. The vertical axis is
the time in seconds on logarithmic scale and the horizontal axis represents the dataset. The current
algorithm performs orders of magnitude faster than the batch MTL and significantly faster than
other online algorithms.

0.01	

0.1	

1	

10	

100	

1000	

MN
IST
	

US
PS
	

La
nd
mi
ne
	

Sto
ck	

Se
co
nd

s	

Batch	
 MTL	

TREE	

ELLA	

Current	

means to cluster the tasks together. An important contribution of this paper is to show that su-

pervised learning may also be used to learn task relationships. In order to show that supervised

learning is better for partitioning task space, we use two methods to partition the task space in

the current framework. The first method is using k-means algorithm to cluster the tasks into two

groups at each node of the partition tree being developed in this algorithm. We use the online k-

mean algorithm presented by Shindler (129). This algorithm is both fast as it requires only one pass

of the dataset and has shown a good performance in unsupervised learning. The second method is

to use our supervised learning approach to partition the task space as described in section 7.2.2.1.

All other parameters were kept exactly the same in both the methods. The data was divided into

training and testing and the performance was recorded 100 times. The same division of the data

as used in previous sections were used here as well. The performance of using k-means versus the

current algorithm is shown in table 7.4. The time comparison of the two methods is shown in table

7.5. As can be seen, the current method is faster and has better performance than using k-means

129

Table 7.4: The performance comparison of our method versus using k-means to group the tasks
together. Results reported are average accuracies. As can be seen, our algorithm has a better
performance than using just k-means.

Dataset k-Means Current
MNIST 0.8863 ± 0.0245 0.8960 ± 0.0189
USPS 0.8972 ± 0.0128 0.8998 ± 0.0001

LANDMINE 0.7301 ± 0.0110 0.7308 ± 0.0107
STOCK 0.9317 ± 0.0027 0.9388 ± 0.0026

Table 7.5: The time comparison of our method versus using k-means to group the tasks together.
Results reported are average time in seconds. As can be seen, our algorithm is slightly faster than
using just k-means.

Dataset k-Means (sec) Current (sec)
MNIST 1.1583 ± 0.0530 1.1326 ± 0.0573
USPS 0.6819 ± 0.0437 0.6637 ± 0.0543

LANDMINE 0.4766 ± 0.0206 0.2768 ± 0.0320
STOCK 0.1184 ± 0.0170 0.0865 ± 0.0256

to partition the tasks. It is observed that the k-means algorithm takes significantly more time for

datasets with larger number of tasks such as landmine and stock dataset.

7.3.2.4 Validation against Negative Transfer of Information

The last experiment which we conducted was to measure the error as a function of task. For this

experiment, we plot the average error on existing tasks over 100 runs, each time a new task is made

available. The tasks were randomized in each of the 100 runs. The errors were plotted against the

position of the task in the sequence in which it was encountered. We also plot the best exponential

fit curve. The figure is shown in Figure 7.2. As can be seen in the figure, the overall trend of the

error is decreasing in all the tasks. This shows that negative transfer does not occur in general as

new tasks arrive and the new tasks arriving improve the overall performance.

130

Figure 7.2: The decrease in the overall error as a function of position in task sequence. The red
line indicates best exponential fitting curve.

7.4 Conclusion

In this paper, we develop a novel algorithm for lifelong multitask learning in which we use par-

tition functions to cluster the related tasks and learn the task parameters. We present a global

formulation which partitions the task space and learns the task models using supervised learning.

We also assume that the related tasks depend on similar set of features, and thus, regularize the

similar tasks together using L1 norm to implement feature selection.

The current algorithm is implemented and its performance is compared against leading lifelong

learning algorithm. We observe that the current algorithm performs better than the leading algo-

rithms in terms of both speed and accuracy.

131

Chapter 8

Conclusion and Future Work

This thesis is dedicated to the study of task relationship modeling in multitask learning. There are

a lot of implementation of multitask learning algorithms where the algorithms assume that all tasks

are related in the same way. These algorithms may or may not use feature learning. However, when

shifting gears to move to the domain of utilization of known task relationship structure or trying to

learn the task relationship structure, the implementations that utilize feature learning become very

limited. If we move to domain of online fixed task multitask and lifelong multitask learning, the

amount of existing literature reduces significantly. When considering task relationship models and

feature learning, the literature is even further scarce. Thus, the focus of this thesis is to develop

multitask feature learning algorithms in both static and lifelong learning settings, which learn the

task relationships, and apply them in a real world dataset.

The first two algorithms we explored were related to static multitask learning with task relationship

modeling. In both the algorithms, we delved into the simplest kind of task relationships, which is

identification of groups of related tasks. Most of the existing multitask learning algorithms assume

that all the related tasks are close to each other in either the physical space or an alternative sub-

dimensional latent space. Also, we often observe that the tasks do not depend on all the features,

and feature selection improves the generalization error of the task. Usually, the similar tasks tend

132

to depend on the similar sets of features. Therefore, in these two learning algorithms we identify

groups of similar tasks and enforce similar tasks to depend on similar features. For feature se-

lection, bayesian equivalent of the L0 norm, spike and slab prior, is used as L0 norm is the ideal

feature selection method and improves the efficiency. For task clustering, we explore two different

priors, namely, mixture of gaussian priors and categorical distribution. For the first algorithm, we

assume that the probability of selecting a feature ρd in each task lie close to each other, and enforce

a gaussian prior over ρd in each group. Therefore, mixture of gaussian prior describes the distri-

bution of tasks across the groups. We empirically observe that using the mixture of gaussian prior

gives a good performance in large number of tasks, but has convergence issues when the number

of tasks are small. The reason may be the large number of parameters that need to be optimized

in this method. Therefore, in the second algorithm, categorical distribution was used to group the

tasks together. We make a stronger assumption here that the probabilities of selecting each feature

in a group is same. And the probability of a task belonging to a group is defined using categorical

distribution. We empirically show this algorithm out performs leading state of the art methods used

for identification of groups of related tasks in multitask learning.

The next two algorithms explore the setting of learning task relationship model in lifelong multi-

task learning. Task relationship modeling often takes the form of estimating a fixed sized matrix to

represent the task relationships. With varying number of tasks, it is not computationally efficient

to use fixed sized task correlation matrices. Therefore, we propose the use of partition models to

divide the task space. The partition model makes it easier to transfer the learnt information to the

new incoming tasks. We develop two different algorithms for identification of groups of tasks in

lifelong multitask learning. In the first approach, the task space is partitioned hierarchically based

on the proximity of the tasks. For each node in the partition tree, a local model is learnt for all

the tasks which belong to that node. The task parameters are given by the sum of all the models

corresponding to the partition the task falls in and the task specific parameters. In this algorithm,

task partition and model learning takes place in two independent steps. In the next algorithm, we

133

propose a global formulation for task partitioning and learning local models common to the tasks

in a given group. Both, the learning of local models and the learning of partition functions is

formalized as a supervised learning problem. Further, this algorithm executes feature selection as

well. We empirically show that our algorithms perform better than the state of the art algorithms

in terms of both accuracy and computational performance.

This thesis is actually the beginning of a new topic of structure identification in lifelong multi-

task learning framework. The domain of lifelong multitask learning is a potentially unexplored

area, and there are multiple directions in which we might proceed. In this thesis, we only explore

the identification of groups of tasks. There are multiple applications where the tasks are arranged

either hierarchically or have a graphical structure. Task clusters are merely a simplification of these

structures. Therefore, one direction may be to learn the complete task relationship structures rather

than their simplification in form of clusters.

Another direction which might be explored is the use of non-parametric methods for lifelong mul-

titask learning. The parametric methods usually pre-define the size of the model to be used. For

example, the maximum number of partitions or clusters in our model are set before the training

process starts. However, allowing the model to grow in lifelong learning becomes specially im-

portant because the total number of tasks a learning agent acquires during its lifetime is unknown.

Therefore, incorporation of non-parametric algorithms with lifelong multitask learning can pro-

vide one solution.

The application domain of lifelong multitask learning is relatively unexplored as well. A wide

range of applications may benefit from lifelong multitask learning. Some of the examples of such

applications are image annotations, predicting protein-chemical interaction, robotics and docu-

ment classification. In all these applications, the number of tasks may increase as new data is

added to the learning agent. It will be interesting to explore and apply lifelong learning in real

134

world applications so that humanity may benefit from lifelong multitask learning.

135

References

[1] Abernethy, J., Bartlett, P., & Rakhlin, A. (2007). Multitask learning with expert advice. In

Learning Theory (pp. 484–498). Springer.

[2] Agarwal, A., Rakhlin, A., & Bartlett, P. (2008). Matrix regularization techniques for on-

line multitask learning. EECS Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2008-138.

[3] Ammar, H. B., Eaton, E., Ruvolo, P., & Taylor, M. (2014). Online multi-task learning for

policy gradient methods. In Proceedings of the 31st International Conference on Machine

Learning (ICML-14) (pp. 1206–1214).

[4] Archembeau, C., Guo, S., & Zoeter, O. (2011). Sparse bayesian multi-task learning. In

Advances in Neural Information Processing Systems, volume 1 (pp.4̃1).

[5] Argyriou, A., Evgeniou, T., & Pontil, M. (2007a). Multi-task feature learning. In Advances

in Neural Information Processing Systems 19: Proceedings of the 2006 Conference, volume 19

(pp.4̃1).: The MIT Press.

[6] Argyriou, A., Evgeniou, T., & Pontil, M. (2008). Convex multi-task feature learning. Machine

Learning, 73(3), 243–272.

[7] Argyriou, A., Pontil, M., Ying, Y., & Micchelli, C. A. (2007b). A spectral regularization

framework for multi-task structure learning. In Advances in Neural Information Processing

Systems (pp. 25–32).

136

[8] Attneave, F. (1959). Applications of information theory to psychology: A summary of basic

concepts, methods, and results.

[9] Bakker, B. & Heskes, T. (2003). Task clustering and gating for bayesian multitask learning.

The Journal of Machine Learning Research, 4, 83–99.

[10] Basseville, M., Nikiforov, I. V., et al. (1993). Detection of abrupt changes: theory and

application, volume 104. Prentice Hall Englewood Cliffs.

[11] Bennett, K. P., Cristianini, N., Shawe-Taylor, J., & Wu, D. (2000). Enlarging the margins in

perceptron decision trees. Machine Learning, 41(3), 295–313.

[12] Binh, N. D. (2011). Online multiple tasks one-shot learning of object categories and vision.

In Proceedings of the 9th International Conference on Advances in Mobile Computing and

Multimedia (pp. 131–138).: ACM.

[13] Bishop, C. M. et al. (2006a). Pattern recognition and machine learning, volume 1. springer

New York.

[14] Bishop, C. M. et al. (2006b). Pattern recognition and machine learning, volume 4. springer

New York.

[15] Bonilla, E. V., Chai, K. M. A., & Williams, C. K. (2007). Multi-task gaussian process pre-

diction. In Nips, volume 20 (pp. 153–160).

[16] Bot, M. C. & Langdon, W. B. (2000). Improving induction of linear classification trees with

genetic programming. space, 10(1.25), 2.

[Breiman et al.] Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. Classification and

regression trees.

[18] Cai, L. & Hofmann, T. (2004). Hierarchical document categorization with support vector

machines. In Proceedings of the thirteenth ACM international conference on Information and

knowledge management (pp. 78–87).: ACM.

137

[19] Caruana, R. (1996). Algorithms and applications for multitask learning. In ICML (pp. 87–95).

[20] Caruana, R. (1998). Multitask learning. Springer.

[21] Cavallanti, G. & Cesa-Bianchi, N. (2012). Memory constraint online multitask classification.

arXiv preprint arXiv:1210.0473.

[22] Cavallanti, G., Cesa-Bianchi, N., & Gentile, C. (2010). Linear algorithms for online multitask

classification. The Journal of Machine Learning Research, 11, 2901–2934.

[23] Cesa-Bianchi, N., Gentile, C., Zaniboni, L., et al. (2006). Incremental algorithms for hierar-

chical classification. Journal of Machine Learning Research, 7(1).

[24] Chai, K. M. A., Williams, C. K., Klanke, S., & Vijayakumar, S. (2008). Multi-task gaussian

process learning of robot inverse dynamics. In NIPS (pp. 265–272).

[25] Chandra, B., Kothari, R., & Paul, P. (2010). A new node splitting measure for decision tree

construction. Pattern Recognition, 43(8), 2725–2731.

[26] Chen, J., Tang, L., Liu, J., & Ye, J. (2009). A convex formulation for learning shared struc-

tures from multiple tasks. In Proceedings of the 26th Annual International Conference on

Machine Learning (pp. 137–144).: ACM.

[27] Chen, X., Kim, S., Lin, Q., Carbonell, J. G., & Xing, E. P. (2010). Graph-structured multi-

task regression and an efficient optimization method for general fused lasso. arXiv preprint

arXiv:1005.3579.

[28] Chen, X., Lin, Q., Kim, S., Carbonell, J. G., Xing, E. P., et al. (2012). Smoothing proximal

gradient method for general structured sparse regression. The Annals of Applied Statistics, 6(2),

719–752.

[29] Collobert, R. & Weston, J. (2008). A unified architecture for natural language processing:

Deep neural networks with multitask learning. In Proceedings of the 25th international confer-

ence on Machine learning (pp. 160–167).: ACM.

138

[30] Cover, T. & Hart, P. (1967). Nearest neighbor pattern classification. Information Theory,

IEEE Transactions on, 13(1), 21–27.

[31] Crammer, K. & Mansour, Y. (2012). Learning multiple tasks using shared hypotheses. In

Advances in Neural Information Processing Systems 25 (pp. 1484–1492).

[32] Dasarathy, B. V. (1991). Nearest neighbor ({NN}) norms:{NN} pattern classification tech-

niques.

[33] Daumé III, H. (2009). Bayesian multitask learning with latent hierarchies. In Proceedings

of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (pp. 135–142).: AUAI

Press.

[34] DeCoro, C., Barutcuoglu, Z., & Fiebrink, R. (2007). Bayesian aggregation for hierarchical

genre classification. In ISMIR (pp. 77–80).

[35] Dekel, O., Keshet, J., & Singer, Y. (2004). Large margin hierarchical classification. In

Proceedings of the twenty-first international conference on Machine learning (pp.2̃7).: ACM.

[36] Dekel, O., Long, P. M., & Singer, Y. (2006). Online multitask learning. In Learning Theory

(pp. 453–467). Springer.

[37] Dekel, O., Long, P. M., & Singer, Y. (2007). Online learning of multiple tasks with a shared

loss. Journal of Machine Learning Research, 8(10).

[38] Domingo, C. & Watanabe, O. (2000). Madaboost: A modification of adaboost. In COLT (pp.

180–189).

[39] Domingos, P. (1996). Unifying instance-based and rule-based induction. Machine Learning,

24(2), 141–168.

[40] Dumais, S. & Chen, H. (2000). Hierarchical classification of web content. In Proceedings of

the 23rd annual international ACM SIGIR conference on Research and development in infor-

mation retrieval (pp. 256–263).: ACM.

139

[41] Eaton, E. & Ruvolo, P. L. (2013). Ella: An efficient lifelong learning algorithm. In Proceed-

ings of the 30th International Conference on Machine Learning (ICML-13) (pp. 507–515).

[42] Evgeniou, T., Micchelli, C. A., & Pontil, M. (2006). Learning multiple tasks with kernel

methods. Journal of Machine Learning Research, 6(1), 615.

[43] Evgeniou, T. & Pontil, M. (2004). Regularized multi–task learning. In Proceedings of the

tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp.

109–117).: ACM.

[44] Fayyad, U. M. & Irani, K. B. (1992). The attribute selection problem in decision tree gener-

ation. In AAAI (pp. 104–110).

[45] Fei, H. & Huan, J. (2013). Structured feature selection and task relationship inference for

multi-task learning. Knowledge and information systems, 35(2), 345–364.

[46] Fei, H., Jiang, R., Yang, Y., Luo, B., & Huan, J. (2011). Content based social behavior predic-

tion: a multi-task learning approach. In Proceedings of the 20th ACM international conference

on Information and knowledge management (pp. 995–1000).: ACM.

[47] Freund, Y. (2001). An adaptive version of the boost by majority algorithm. Machine learning,

43(3), 293–318.

[48] Friedman, J. H. (1977). A recursive partitioning decision rule for nonparametric classifica-

tion. IEEE Trans. Computers, 26(4), 404–408.

[49] Gama, J. (1997). Oblique linear tree. In Advances in Intelligent Data Analysis Reasoning

about Data (pp. 187–198). Springer.

[50] Gelfand, S. B., Ravishankar, C., & Delp, E. J. (1989). An iterative growing and pruning

algorithm for classification tree design. In Systems, Man and Cybernetics, 1989. Conference

Proceedings., IEEE International Conference on (pp. 818–823).: IEEE.

140

[51] Gong, P., Ye, J., & Zhang, C. (2012). Multi-stage multi-task feature learning. In NIPS (pp.

1997–2005).

[52] Gopal, S. & Yang, Y. (2013). Recursive regularization for large-scale classification with hi-

erarchical and graphical dependencies. In Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 257–265).: ACM.

[53] Gu, Q. & Han, J. (2013). Clustered support vector machines. In proceedings of the sixteenth

international conference on artificial intelligence and statistics (pp. 307–315).

[54] Gupta, S., Phung, D., & Venkatesh, S. (2013). Factorial multi-task learning: A bayesian

nonparametric approach. In Proceedings of International Conference on Machine Learning

(ICML).

[55] Han, S., Liao, X., & Carin, L. (2012). Cross-domain multitask learning with latent probit

models. arXiv preprint arXiv:1206.6419.

[56] Harpale, A. & Yang, Y. (2010). Active learning for multi-task adaptive filtering. In Proceed-

ings of the 27th International Conference on Machine Learning (ICML-10) (pp. 431–438).

[57] Hastie, T. & Tibshirani, R. (1996). Discriminant analysis by gaussian mixtures. Journal of

the Royal Statistical Society. Series B (Methodological), (pp. 155–176).

[58] Henrichon Jr, E. G. & Fu, K.-S. (1969). A nonparametric partitioning procedure for pattern

classification. Computers, IEEE Transactions on, 100(7), 614–624.

[59] Hernández-Lobato, D. (2009). Prediction Based on Averages over Automatically Induced

Learners: Ensemble Methods and Bayesian Techniques. PhD thesis, UNIVERSIDAD AU-

TONOMA DE MADRID.

[60] Hernández-Lobato, D., Hernández-Lobato, J. M., & Dupont, P. (2013). Generalized spike-

and-slab priors for bayesian group feature selection using expectation propagation. The Journal

of Machine Learning Research, 14(1), 1891–1945.

141

[61] Hernández-Lobato, D., Hernández-Lobato, J. M., Helleputte, T., & Dupont, P. (2010a). Ex-

pectation propagation for bayesian multi-task feature selection. In Machine Learning and

Knowledge Discovery in Databases (pp. 522–537). Springer.

[62] Hernández-Lobato, D., Hernández-Lobato, J. M., & Suárez, A. (2010b). Expectation propa-

gation for microarray data classification. Pattern recognition letters, 31(12), 1618–1626.

[63] Honorio, J. & Samaras, D. (2010). Multi-task learning of gaussian graphical models. In

Proceedings of the 27th International Conference on Machine Learning (ICML-10) (pp. 447–

454).

[64] Hull, J. J. (1994). A database for handwritten text recognition research. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 16(5), 550–554.

[65] Indurkhya, N. & Weiss, S. M. (1995). Using case data to improve on rule-based function

approximation. In Case-Based Reasoning Research and Development (pp. 217–228). Springer.

[66] Ishwaran, H. & Rao, J. S. (2005). Spike and slab variable selection: frequentist and bayesian

strategies. Annals of Statistics, (pp. 730–773).

[67] Iyengar, V. S. (1999). Hot: Heuristics for oblique trees. In Tools with Artificial Intelligence,

1999. Proceedings. 11th IEEE International Conference on (pp. 91–98).: IEEE.

[68] Jacob, L., Bach, F., & Vert, J.-P. (2008). Clustered multi-task learning: A convex formulation.

arXiv preprint arXiv:0809.2085.

[69] Jalali, A., Sanghavi, S., Ruan, C., & Ravikumar, P. K. (2010). A dirty model for multi-task

learning. In Advances in Neural Information Processing Systems (pp. 964–972).

[70] Jawanpuria, P. & Nath, J. S. (2012). A convex feature learning formulation for latent task

structure discovery. arXiv preprint arXiv:1206.4611.

[71] Ji, S., Dunson, D., & Carin, L. (2009). Multitask compressive sensing. Signal Processing,

IEEE Transactions on, 57(1), 92–106.

142

[72] Jun, B. H., Kim, C. S., Song, H.-Y., & Kim, J. (1997). A new criterion in selection and

discretization of attributes for the generation of decision trees. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 19(12), 1371–1375.

[73] Kang, Z., Grauman, K., & Sha, F. (2011). Learning with whom to share in multi-task feature

learning. In Proceedings of the 28th International Conference on Machine Learning (pp. 521–

528).

[74] Kato, T., Kashima, H., Sugiyama, M., & Asai, K. (2007). Multi-task learning via conic

programming. In NIPS.

[75] Kim, T.-K. & Kittler, J. (2005). Locally linear discriminant analysis for multimodally dis-

tributed classes for face recognition with a single model image. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 27(3), 318–327.

[76] Koller, D. & Sahami, M. (1997). Hierarchically classifying documents using very few words.

[77] Koza, J. R. (1991). Concept formation and decision tree induction using the genetic program-

ming paradigm. In Parallel Problem Solving from Nature (pp. 124–128). Springer.

[78] Koza, J. R. (1992). Genetic programming: on the programming of computers by means of

natural selection, volume 1. MIT press.

[79] Kumar, A. & Daume III, H. (2012). Learning task grouping and overlap in multi-task learn-

ing. arXiv preprint arXiv:1206.6417.

[80] Ladicky, L. & Torr, P. (2011). Locally linear support vector machines. In Proceedings of the

28th International Conference on Machine Learning (ICML-11) (pp. 985–992).

[81] Lampert, C. H., Nickisch, H., & Harmeling, S. (2009). Learning to detect unseen object

classes by between-class attribute transfer. In Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on (pp. 951–958).: IEEE.

143

[82] Last, M. & Maimon, O. (2004). A compact and accurate model for classification. Knowledge

and Data Engineering, IEEE Transactions on, 16(2), 203–215.

[83] Lázaro-gredilla, M. & Titsias, M. K. (2011). Spike and slab variational inference for multi-

task and multiple kernel learning. In Advances in neural information processing systems (pp.

2339–2347).

[84] Lee, S., Zhu, J., & Xing, E. P. (2010). Adaptive multi-task lasso: with application to eqtl

detection. In Advances in neural information processing systems (pp. 1306–1314).

[85] Lee, S.-I., Chatalbashev, V., Vickrey, D., & Koller, D. (2007). Learning a meta-level prior

for feature relevance from multiple related tasks. In Proceedings of the 24th international

conference on Machine learning (pp. 489–496).: ACM.

[86] Li, C., Dong, W., Liu, Q., & Zhang, X. (2014a). Mores: Online incremental multiple-output

regression for data streams. arXiv preprint arXiv:1412.5732.

[87] Li, G., Hoi, S. C., Chang, K., Liu, W., & Jain, R. (2014b). Collaborative online multitask

learning. Knowledge and Data Engineering, IEEE Transactions on, 26(8), 1866–1876.

[88] Liao, X. & Carin, L. (2005). Radial basis function network for multi-task learning. In NIPS.

[89] Liu, H., Palatucci, M., & Zhang, J. (2009a). Blockwise coordinate descent procedures for

the multi-task lasso, with applications to neural semantic basis discovery. In Proceedings of the

26th Annual International Conference on Machine Learning (pp. 649–656).: ACM.

[90] Liu, J., Ji, S., & Ye, J. (2009b). Multi-task feature learning via efficient l 2, 1-norm minimiza-

tion. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (pp.

339–348).: AUAI Press.

[91] Liu, T.-Y., Yang, Y., Wan, H., Zeng, H.-J., Chen, Z., & Ma, W.-Y. (2005). Support vector ma-

chines classification with a very large-scale taxonomy. ACM SIGKDD Explorations Newsletter,

7(1), 36–43.

144

[92] Lugosi, G., Papaspiliopoulos, O., & Stoltz, G. (2009). Online multi-task learning with hard

constraints. arXiv preprint arXiv:0902.3526.

[93] Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., & Bach, F. R. (2009). Supervised dictionary

learning. In Advances in neural information processing systems (pp. 1033–1040).

[94] Meier, L., Van De Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1), 53–71.

[95] Micchelli, C. A. & Pontil, M. (2005). On learning vector-valued functions. Neural Compu-

tation, 17(1), 177–204.

[96] Minka, T. P. (2001a). Expectation propagation for approximate bayesian inference. In Pro-

ceedings of the Seventeenth conference on Uncertainty in artificial intelligence (pp. 362–369).:

Morgan Kaufmann Publishers Inc.

[97] Minka, T. P. (2001b). A family of algorithms for approximate Bayesian inference. PhD thesis,

Massachusetts Institute of Technology.

[98] Mishra, M. & Huan, J. (2013a). Multitask learning with feature selection for groups of related

tasks. In IEEE International Conference on Data Mining.

[99] Mishra, M. & Huan, J. (2013b). Multitask learning with feature selection for groups of related

tasks. In Data Mining (ICDM), 2013 IEEE 13th International Conference on (pp. 1157–1162).:

IEEE.

[100] Mohamed, S., Heller, K., & Ghahramani, Z. (2011). Bayesian and l1 approaches to sparse

unsupervised learning. arXiv preprint arXiv:1106.1157.

[101] Murthy, S. K., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique decision

trees. Journal of Artificial Intelligence Research, 2(1), 1–32.

145

[102] Nejati, N., Langley, P., & Konik, T. (2006). Learning hierarchical task networks by observa-

tion. In Proceedings of the 23rd international conference on Machine learning (pp. 665–672).:

ACM.

[103] Obozinski, G., Taskar, B., & Jordan, M. (2006). Multi-task feature selection. Statistics

Department, UC Berkeley, Tech. Rep.

[104] Oiwa, H. & Fujimaki, R. (2014). Partition-wise linear models. In Advances in Neural

Information Processing Systems (pp. 3527–3535).

[105] Ozawa, S., Roy, A., & Roussinov, D. (2009). A multitask learning model for online pattern

recognition. Neural Networks, IEEE Transactions on, 20(3), 430–445.

[106] Parameswaran, S. & Weinberger, K. Q. (2010). Large margin multi-task metric learning. In

NIPS, volume 23 (pp. 1867–1875).

[107] Passos, A., Rai, P., Wainer, J., & Daume III, H. (2012). Flexible modeling of latent task

structures in multitask learning. Proceedings of International Conference on Machine Learning

(ICML).

[108] Patil, D. V. & Bichkar, R. (2012). Issues in optimization of decision tree learning: A survey.

International Journal of Applied Information Systems, 3(5).

[109] Pentina, A. & Lampert, C. H. (2013). A pac-bayesian bound for lifelong learning. arXiv

preprint arXiv:1311.2838.

[110] Pillonetto, G., Dinuzzo, F., & De Nicolao, G. (2010). Bayesian online multitask learning of

gaussian processes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(2),

193–205.

[111] Puniyani, K., Kim, S., & Xing, E. P. (2010). Multi-population gwa mapping via multi-task

regularized regression. Bioinformatics, 26(12), i208–i216.

146

[112] Qi, Y., Liu, D., Dunson, D., & Carin, L. (2008). Multi-task compressive sensing with dirich-

let process priors. In Proceedings of the 25th international conference on Machine learning (pp.

768–775).: ACM.

[113] Qi, Y., Tastan, O., Carbonell, J. G., Klein-Seetharaman, J., & Weston, J. (2010). Semi-

supervised multi-task learning for predicting interactions between hiv-1 and human proteins.

Bioinformatics, 26(18), i645–i652.

[114] Quinlan, J. R. (1987). Simplifying decision trees. International journal of man-machine

studies, 27(3), 221–234.

[115] Quinlan, J. R. (1993). C4. 5: Programs for Machine Learning. Morgan Kaufmann.

[116] Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.

[117] Quinlan, J. R. et al. (1992). Learning with continuous classes. In 5th Australian joint

conference on artificial intelligence, volume 92 (pp. 343–348).: Singapore.

[118] Rai, P. & Daumé III, H. (2010). Infinite predictor subspace models for multitask learning. In

Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS).

Sardinia, Italy.

[119] Rokach, L. & Maimon, O. (2005). Top-down induction of decision trees classifiers-a sur-

vey. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

35(4), 476–487.

[120] Rounds, E. (1980). A combined nonparametric approach to feature selection and binary

decision tree design. Pattern Recognition, 12(5), 313–317.

[121] Roussopoulos, N., Kelley, S., & Vincent, F. (1995). Nearest neighbor queries. In ACM

sigmod record, volume 24 (pp. 71–79).: ACM.

[122] Ruvolo, P. & Eaton, E. (2013a). Active task selection for lifelong machine learning. In

Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI-13).

147

[123] Ruvolo, P. & Eaton, E. (2013b). Scalable lifelong learning with active task selection. In

AAAI Spring Symposium: Lifelong Machine Learning.

[124] Ruvolo, P. & Eaton, E. (2014). Online multi-task learning via sparse dictionary optimization.

In Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI-14).

[125] Saha, A., Rai, P., Venkatasubramanian, S., & Daume, H. (2011). Online learning of multiple

tasks and their relationships. In International Conference on Artificial Intelligence and Statistics

(pp. 643–651).

[126] Shah, S. & Sastry, P. S. (1999). New algorithms for learning and pruning oblique decision

trees. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions

on, 29(4), 494–505.

[127] Shen, J., Xu, H., & Li, P. (2014). Online optimization for max-norm regularization. In

Advances in Neural Information Processing Systems (pp. 1718–1726).

[128] Shewhart, W. A. (1931). Economic control of quality of manufactured product, volume 509.

ASQ Quality Press.

[129] Shindler, M., Wong, A., & Meyerson, A. W. (2011). Fast and accurate k-means for large

datasets. In Advances in neural information processing systems (pp. 2375–2383).

[130] Shivaswamy, P. & Joachims, T. (2012). Online structured prediction via coactive learning.

arXiv preprint arXiv:1205.4213.

[131] Silver, D. L. & Mercer, R. E. (2002). The task rehearsal method of life-long learning:

Overcoming impoverished data. In Advances in Artificial Intelligence (pp. 90–101). Springer.

[132] Silver, D. L. & Poirier, R. (2004). Sequential consolidation of learned task knowledge.

Springer.

[133] Silver, D. L., Poirier, R., & Currie, D. (2008). Inductive transfer with context-sensitive

neural networks. Machine Learning, 73(3), 313–336.

148

[134] Silver, D. L., Yang, Q., & Li, L. (2013). Lifelong machine learning systems: Beyond

learning algorithms. In AAAI Spring Symposium: Lifelong Machine Learning.

[135] Sollich, P. & Ashton, S. (2012). Learning curves for multi-task gaussian process regression.

In Advances in Neural Information Processing Systems (pp. 1790–1798).

[136] Solomonoff, R. J. (1989). A system for incremental learning based on algorithmic probabil-

ity. In Proceedings of the Sixth Israeli Conference on Artificial Intelligence, Computer Vision

and Pattern Recognition (pp. 515–527).

[137] Steinberg, D. & Colla, P. (2009). Cart: classification and regression trees. The top ten

algorithms in data mining, 9, 179.

[138] Stevens, R., Goble, C., Baker, P., & Brass, A. (2001). A classification of tasks in bioinfor-

matics. Bioinformatics, 17(2), 180–188.

[139] Sun, X., Kashima, H., & Ueda, N. (2013). Large-scale personalized human activity recog-

nition using online multitask learning. Knowledge and Data Engineering, IEEE Transactions

on, 25(11), 2551–2563.

[140] Sun, X., Shrivastava, A., & Li, P. (2012). Fast multi-task learning for query spelling correc-

tion. In Proceedings of the 21st ACM international conference on Information and knowledge

management (pp. 285–294).: ACM.

[141] Swirszcz, G. & Lozano, A. C. (2012). Multi-level lasso for sparse multi-task regression. In

Proceedings of the 29th International Conference on Machine Learning (ICML-12) (pp. 361–

368).

[142] Thrun, S. (1996). Learning to learn: Introduction. In In Learning To Learn: Citeseer.

[143] Thrun, S. (1998). Lifelong learning algorithms. In Learning to learn (pp. 181–209).

Springer.

149

[144] Torgo, L. (1997). Functional models for regression tree leaves. In ICML, volume 97 (pp.

385–393).: Citeseer.

[145] Turlach, B. A., Venables, W. N., & Wright, S. J. (2005). Simultaneous variable selection.

Technometrics, 47(3), 349–363.

[146] Utgo, P. E. & Clouse, J. (1996). A kolmogorov-smirnoff metric for decision tree induction.

Amherst, Massachusetts: University of Massachusetts, Department of Computer Science.

[147] Viani, F., Poli, L., Oliveri, G., Robol, F., & Massa, A. (2013). Sparse scatterers imaging

through approximated multitask compressive sensing strategies. Microwave and Optical Tech-

nology Letters, 55(7), 1553–1558.

[148] Wan, J., Zhang, Z., Yan, J., Li, T., Rao, B. D., Fang, S., Kim, S., Risacher, S., Saykin, A. J.,

& Shen, L. (2012). Sparse bayesian multi-task learning for predicting cognitive outcomes from

neuroimaging measures in alzheimer’s disease. In Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on (pp. 940–947).: IEEE.

[149] Wang, H., Nie, F., Huang, H., Kim, S., Nho, K., Risacher, S. L., Saykin, A. J., Shen, L.,

et al. (2012). Identifying quantitative trait loci via group-sparse multitask regression and feature

selection: an imaging genetics study of the adni cohort. Bioinformatics, 28(2), 229–237.

[150] Wang, J. & Saligrama, V. (2012). Local supervised learning through space partitioning. In

Advances in Neural Information Processing Systems (pp. 91–99).

[151] Wang, X., Zhang, C., & Zhang, Z. (2009). Boosted multi-task learning for face verification

with applications to web image and video search. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on (pp. 142–149).: IEEE.

[152] Weiss, S. M. & Indurkhya, N. (1995). Rule-based machine learning methods for functional

prediction. Journal of Artificial Intelligence Research, (pp. 383–403).

150

[153] Wu, Q., Zhang, Y. D., Amin, M. G., & Himed, B. (2014). Complex multitask bayesian

compressive sensing. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Inter-

national Conference on (pp. 3375–3379).: IEEE.

[154] Xiao, L. (2009). Dual averaging method for regularized stochastic learning and online

optimization. In Advances in Neural Information Processing Systems (pp. 2116–2124).

[155] Xu, J., Tan, P.-N., & Luo, L. (2014). Orion: Online regularized multi-task regression and

its application to ensemble forecasting. In Data Mining (ICDM), 2014 IEEE International

Conference on (pp. 1061–1066).: IEEE.

[156] Xue, Y., Liao, X., Carin, L., & Krishnapuram, B. (2007). Multi-task learning for classifica-

tion with dirichlet process priors. The Journal of Machine Learning Research, 8, 35–63.

[157] Yang, H., King, I., & Lyu, M. R. (2010). Online learning for multi-task feature selection.

In Proceedings of the 19th ACM international conference on Information and knowledge man-

agement (pp. 1693–1696).: ACM.

[158] Yang, H., Lyu, M. R., & King, I. (2013). Efficient online learning for multitask feature

selection. ACM Transactions on Knowledge Discovery from Data (TKDD), 7(2), 6.

[159] Yang, X., Kim, S., & Xing, E. (2009). Heterogeneous multitask learning with joint sparsity

constraints. Advances in neural information processing systems, 23, 2151–2159.

[160] Yang, Y., Zhang, J., & Kisiel, B. (2003). A scalability analysis of classifiers in text catego-

rization. In Proceedings of the 26th annual international ACM SIGIR conference on Research

and development in informaion retrieval (pp. 96–103).: ACM.

[161] Yu, K., Tresp, V., & Schwaighofer, A. (2005). Learning gaussian processes from multiple

tasks. In Proceedings of the 22nd international conference on Machine learning (pp. 1012–

1019).: ACM.

151

[162] Yu, S., Tresp, V., & Yu, K. (2007). Robust multi-task learning with t-processes. In Proceed-

ings of the 24th international conference on Machine learning (pp. 1103–1110).: ACM.

[163] Zhang, C.-H. & Huang, J. (2008). The sparsity and bias of the lasso selection in high-

dimensional linear regression. The Annals of Statistics, (pp. 1567–1594).

[164] Zhang, J. & García, J. (2015). Online classifier adaptation for cost-sensitive learning. Neural

Computing and Applications, (pp. 1–9).

[165] Zhang, J., Ghahramani, Z., & Yang, Y. (2005). Learning multiple related tasks using latent

independent component analysis. In NIPS.

[166] Zhang, T. (2008). Multi-stage convex relaxation for learning with sparse regularization. In

NIPS, volume 8 (pp. 1929–1936).

[167] Zhang, Y. & Schneider, J. G. (2010). Learning multiple tasks with a sparse matrix-normal

penalty. In NIPS (pp. 2550–2558).

[168] Zhang, Y. & Yeung, D.-Y. (2012). A convex formulation for learning task relationships in

multi-task learning. arXiv preprint arXiv:1203.3536.

[169] Zhang, Y., Yeung, D.-Y., & Xu, Q. (2010). Probabilistic multi-task feature selection. Ad-

vances in neural information processing systems, 23, 2559–2567.

[170] Zhong, W. & Kwok, J. (2012). Convex multitask learning with flexible task clusters. arXiv

preprint arXiv:1206.4601.

[171] Zhou, J., Chen, J., & Ye, J. (2011). Clustered multi-task learning via alternating structure

optimization. Advances in Neural Information Processing Systems, 25.

152

