168 research outputs found

    ADU-Depth: Attention-based Distillation with Uncertainty Modeling for Depth Estimation

    Full text link
    Monocular depth estimation is challenging due to its inherent ambiguity and ill-posed nature, yet it is quite important to many applications. While recent works achieve limited accuracy by designing increasingly complicated networks to extract features with limited spatial geometric cues from a single RGB image, we intend to introduce spatial cues by training a teacher network that leverages left-right image pairs as inputs and transferring the learned 3D geometry-aware knowledge to the monocular student network. Specifically, we present a novel knowledge distillation framework, named ADU-Depth, with the goal of leveraging the well-trained teacher network to guide the learning of the student network, thus boosting the precise depth estimation with the help of extra spatial scene information. To enable domain adaptation and ensure effective and smooth knowledge transfer from teacher to student, we apply both attention-adapted feature distillation and focal-depth-adapted response distillation in the training stage. In addition, we explicitly model the uncertainty of depth estimation to guide distillation in both feature space and result space to better produce 3D-aware knowledge from monocular observations and thus enhance the learning for hard-to-predict image regions. Our extensive experiments on the real depth estimation datasets KITTI and DrivingStereo demonstrate the effectiveness of the proposed method, which ranked 1st on the challenging KITTI online benchmark.Comment: accepted by CoRL 202

    Guided Stereo Matching

    Full text link
    Stereo is a prominent technique to infer dense depth maps from images, and deep learning further pushed forward the state-of-the-art, making end-to-end architectures unrivaled when enough data is available for training. However, deep networks suffer from significant drops in accuracy when dealing with new environments. Therefore, in this paper, we introduce Guided Stereo Matching, a novel paradigm leveraging a small amount of sparse, yet reliable depth measurements retrieved from an external source enabling to ameliorate this weakness. The additional sparse cues required by our method can be obtained with any strategy (e.g., a LiDAR) and used to enhance features linked to corresponding disparity hypotheses. Our formulation is general and fully differentiable, thus enabling to exploit the additional sparse inputs in pre-trained deep stereo networks as well as for training a new instance from scratch. Extensive experiments on three standard datasets and two state-of-the-art deep architectures show that even with a small set of sparse input cues, i) the proposed paradigm enables significant improvements to pre-trained networks. Moreover, ii) training from scratch notably increases accuracy and robustness to domain shifts. Finally, iii) it is suited and effective even with traditional stereo algorithms such as SGM.Comment: CVPR 201
    • …
    corecore