19 research outputs found

    Learning monocular depth estimation with unsupervised trinocular assumptions

    Full text link
    Obtaining accurate depth measurements out of a single image represents a fascinating solution to 3D sensing. CNNs led to considerable improvements in this field, and recent trends replaced the need for ground-truth labels with geometry-guided image reconstruction signals enabling unsupervised training. Currently, for this purpose, state-of-the-art techniques rely on images acquired with a binocular stereo rig to predict inverse depth (i.e., disparity) according to the aforementioned supervision principle. However, these methods suffer from well-known problems near occlusions, left image border, etc inherited from the stereo setup. Therefore, in this paper, we tackle these issues by moving to a trinocular domain for training. Assuming the central image as the reference, we train a CNN to infer disparity representations pairing such image with frames on its left and right side. This strategy allows obtaining depth maps not affected by typical stereo artifacts. Moreover, being trinocular datasets seldom available, we introduce a novel interleaved training procedure enabling to enforce the trinocular assumption outlined from current binocular datasets. Exhaustive experimental results on the KITTI dataset confirm that our proposal outperforms state-of-the-art methods for unsupervised monocular depth estimation trained on binocular stereo pairs as well as any known methods relying on other cues.Comment: 14 pages, 7 figures, 4 tables. Accepted to 3DV 201

    Footprints and Free Space from a Single Color Image

    Full text link
    Understanding the shape of a scene from a single color image is a formidable computer vision task. However, most methods aim to predict the geometry of surfaces that are visible to the camera, which is of limited use when planning paths for robots or augmented reality agents. Such agents can only move when grounded on a traversable surface, which we define as the set of classes which humans can also walk over, such as grass, footpaths and pavement. Models which predict beyond the line of sight often parameterize the scene with voxels or meshes, which can be expensive to use in machine learning frameworks. We introduce a model to predict the geometry of both visible and occluded traversable surfaces, given a single RGB image as input. We learn from stereo video sequences, using camera poses, per-frame depth and semantic segmentation to form training data, which is used to supervise an image-to-image network. We train models from the KITTI driving dataset, the indoor Matterport dataset, and from our own casually captured stereo footage. We find that a surprisingly low bar for spatial coverage of training scenes is required. We validate our algorithm against a range of strong baselines, and include an assessment of our predictions for a path-planning task.Comment: Accepted to CVPR 2020 as an oral presentatio
    corecore