2 research outputs found

    When Humans Aren't Optimal: Robots that Collaborate with Risk-Aware Humans

    Full text link
    In order to collaborate safely and efficiently, robots need to anticipate how their human partners will behave. Some of today's robots model humans as if they were also robots, and assume users are always optimal. Other robots account for human limitations, and relax this assumption so that the human is noisily rational. Both of these models make sense when the human receives deterministic rewards: i.e., gaining either 100or100 or 130 with certainty. But in real world scenarios, rewards are rarely deterministic. Instead, we must make choices subject to risk and uncertainty--and in these settings, humans exhibit a cognitive bias towards suboptimal behavior. For example, when deciding between gaining 100withcertaintyor100 with certainty or 130 only 80% of the time, people tend to make the risk-averse choice--even though it leads to a lower expected gain! In this paper, we adopt a well-known Risk-Aware human model from behavioral economics called Cumulative Prospect Theory and enable robots to leverage this model during human-robot interaction (HRI). In our user studies, we offer supporting evidence that the Risk-Aware model more accurately predicts suboptimal human behavior. We find that this increased modeling accuracy results in safer and more efficient human-robot collaboration. Overall, we extend existing rational human models so that collaborative robots can anticipate and plan around suboptimal human behavior during HRI.Comment: ACM/IEEE International Conference on Human-Robot Interactio

    Learning models of sequential decision-making with partial specification of agent behavior

    No full text
    Artificial agents that interact with other (human or artificial) agents require models in order to reason about those other agents’ behavior. In addition to the predictive utility of these models, maintaining a model that is aligned with an agent’s true generative model of behavior is critical for effective human-agent interaction. In applications wherein observations and partial specification of the agent’s behavior are available, achieving model alignment is challenging for a variety of reasons. For one, the agent’s decision factors are often not completely known; further, prior approaches that rely upon observations of agents’ behavior alone can fail to recover the true model, since multiple models can explain observed behavior equally well. To achieve better model alignment, we provide a novel approach capable of learning aligned models that conform to partial knowledge of the agent’s behavior. Central to our approach are a factored model of behavior (AMM), along with Bayesian nonparametric priors, and an inference approach capable of incorporating partial specifications as constraints for model learning. We evaluate our approach in experiments and demonstrate improvements in metrics of model alignment
    corecore