2,016 research outputs found

    Discriminatively Trained Latent Ordinal Model for Video Classification

    Full text link
    We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text overlap with arXiv:1604.0150

    Personalized face and gesture analysis using hierarchical neural networks

    Full text link
    The video-based computational analyses of human face and gesture signals encompass a myriad of challenging research problems involving computer vision, machine learning and human computer interaction. In this thesis, we focus on the following challenges: a) the classification of hand and body gestures along with the temporal localization of their occurrence in a continuous stream, b) the recognition of facial expressivity levels in people with Parkinson's Disease using multimodal feature representations, c) the prediction of student learning outcomes in intelligent tutoring systems using affect signals, and d) the personalization of machine learning models, which can adapt to subject and group-specific nuances in facial and gestural behavior. Specifically, we first conduct a quantitative comparison of two approaches to the problem of segmenting and classifying gestures on two benchmark gesture datasets: a method that simultaneously segments and classifies gestures versus a cascaded method that performs the tasks sequentially. Second, we introduce a framework that computationally predicts an accurate score for facial expressivity and validate it on a dataset of interview videos of people with Parkinson's disease. Third, based on a unique dataset of videos of students interacting with MathSpring, an intelligent tutoring system, collected by our collaborative research team, we build models to predict learning outcomes from their facial affect signals. Finally, we propose a novel solution to a relatively unexplored area in automatic face and gesture analysis research: personalization of models to individuals and groups. We develop hierarchical Bayesian neural networks to overcome the challenges posed by group or subject-specific variations in face and gesture signals. We successfully validate our formulation on the problems of personalized subject-specific gesture classification, context-specific facial expressivity recognition and student-specific learning outcome prediction. We demonstrate the flexibility of our hierarchical framework by validating the utility of both fully connected and recurrent neural architectures

    Human-controllable and structured deep generative models

    Get PDF
    Deep generative models are a class of probabilistic models that attempts to learn the underlying data distribution. These models are usually trained in an unsupervised way and thus, do not require any labels. Generative models such as Variational Autoencoders and Generative Adversarial Networks have made astounding progress over the last years. These models have several benefits: eased sampling and evaluation, efficient learning of low-dimensional representations for downstream tasks, and better understanding through interpretable representations. However, even though the quality of these models has improved immensely, the ability to control their style and structure is limited. Structured and human-controllable representations of generative models are essential for human-machine interaction and other applications, including fairness, creativity, and entertainment. This thesis investigates learning human-controllable and structured representations with deep generative models. In particular, we focus on generative modelling of 2D images. For the first part, we focus on learning clustered representations. We propose semi-parametric hierarchical variational autoencoders to estimate the intensity of facial action units. The semi-parametric model forms a hybrid generative-discriminative model and leverages both parametric Variational Autoencoder and non-parametric Gaussian Process autoencoder. We show superior performance in comparison with existing facial action unit estimation approaches. Based on the results and analysis of the learned representation, we focus on learning Mixture-of-Gaussians representations in an autoencoding framework. We deviate from the conventional autoencoding framework and consider a regularized objective with the Cauchy-Schwarz divergence. The Cauchy-Schwarz divergence allows a closed-form solution for Mixture-of-Gaussian distributions and, thus, efficiently optimizing the autoencoding objective. We show that our model outperforms existing Variational Autoencoders in density estimation, clustering, and semi-supervised facial action detection. We focus on learning disentangled representations for conditional generation and fair facial attribute classification for the second part. Conditional image generation relies on the accessibility to large-scale annotated datasets. Nevertheless, the geometry of visual objects, such as in faces, cannot be learned implicitly and deteriorate image fidelity. We propose incorporating facial landmarks with a statistical shape model and a differentiable piecewise affine transformation to separate the representation for appearance and shape. The goal of incorporating facial landmarks is that generation is controlled and can separate different appearances and geometries. In our last work, we use weak supervision for disentangling groups of variations. Works on learning disentangled representation have been done in an unsupervised fashion. However, recent works have shown that learning disentangled representations is not identifiable without any inductive biases. Since then, there has been a shift towards weakly-supervised disentanglement learning. We investigate using regularization based on the Kullback-Leiber divergence to disentangle groups of variations. The goal is to have consistent and separated subspaces for different groups, e.g., for content-style learning. Our evaluation shows increased disentanglement abilities and competitive performance for image clustering and fair facial attribute classification with weak supervision compared to supervised and semi-supervised approaches.Open Acces

    MAFW: A Large-scale, Multi-modal, Compound Affective Database for Dynamic Facial Expression Recognition in the Wild

    Full text link
    Dynamic facial expression recognition (FER) databases provide important data support for affective computing and applications. However, most FER databases are annotated with several basic mutually exclusive emotional categories and contain only one modality, e.g., videos. The monotonous labels and modality cannot accurately imitate human emotions and fulfill applications in the real world. In this paper, we propose MAFW, a large-scale multi-modal compound affective database with 10,045 video-audio clips in the wild. Each clip is annotated with a compound emotional category and a couple of sentences that describe the subjects' affective behaviors in the clip. For the compound emotion annotation, each clip is categorized into one or more of the 11 widely-used emotions, i.e., anger, disgust, fear, happiness, neutral, sadness, surprise, contempt, anxiety, helplessness, and disappointment. To ensure high quality of the labels, we filter out the unreliable annotations by an Expectation Maximization (EM) algorithm, and then obtain 11 single-label emotion categories and 32 multi-label emotion categories. To the best of our knowledge, MAFW is the first in-the-wild multi-modal database annotated with compound emotion annotations and emotion-related captions. Additionally, we also propose a novel Transformer-based expression snippet feature learning method to recognize the compound emotions leveraging the expression-change relations among different emotions and modalities. Extensive experiments on MAFW database show the advantages of the proposed method over other state-of-the-art methods for both uni- and multi-modal FER. Our MAFW database is publicly available from https://mafw-database.github.io/MAFW.Comment: This paper has been accepted by ACM MM'2

    Emotion sensing from head motion capture

    Get PDF
    Computational analysis of emotion from verbal and non-verbal behavioral cues is critical for human-centric intelligent systems. Among the non-verbal cues, head motion has received relatively less attention, although its importance has been noted in several research. We propose a new approach for emotion recognition using head motion captured using Motion Capture (MoCap). Our approach is motivated by the well known kinesics-phonetic analogy, which advocates that, analogous to human speech being composed of phonemes, head motion is composed of kinemes i.e., elementary motion units. We discover a set of kinemes from head motion in an unsupervised manner by projecting them onto a learned basis domain and subsequently clustering them. This transforms any head motion to a sequence of kinemes. Next, we learn the temporal latent structures within the kineme sequence pertaining to each emotion. For this purpose, we explore two separate approaches – one using Hidden Markov Model and another using artificial neural network. This class-specific, kineme-based representation of head motion is used to perform emotion recognition on the popular IEMOCAP database. We achieve high recognition accuracy (61.8% for three class) for various emotion recognition tasks using head motion alone. This work adds to our understanding of head motion dynamics, and has applications in emotion analysis and head motion animation and synthesis
    • …
    corecore