129,657 research outputs found

    Learning Human Optical Flow

    Full text link
    The optical flow of humans is well known to be useful for the analysis of human action. Given this, we devise an optical flow algorithm specifically for human motion and show that it is superior to generic flow methods. Designing a method by hand is impractical, so we develop a new training database of image sequences with ground truth optical flow. For this we use a 3D model of the human body and motion capture data to synthesize realistic flow fields. We then train a convolutional neural network to estimate human flow fields from pairs of images. Since many applications in human motion analysis depend on speed, and we anticipate mobile applications, we base our method on SpyNet with several modifications. We demonstrate that our trained network is more accurate than a wide range of top methods on held-out test data and that it generalizes well to real image sequences. When combined with a person detector/tracker, the approach provides a full solution to the problem of 2D human flow estimation. Both the code and the dataset are available for research.Comment: British Machine Vision Conference 2018 (Oral

    Im2Flow: Motion Hallucination from Static Images for Action Recognition

    Full text link
    Existing methods to recognize actions in static images take the images at their face value, learning the appearances---objects, scenes, and body poses---that distinguish each action class. However, such models are deprived of the rich dynamic structure and motions that also define human activity. We propose an approach that hallucinates the unobserved future motion implied by a single snapshot to help static-image action recognition. The key idea is to learn a prior over short-term dynamics from thousands of unlabeled videos, infer the anticipated optical flow on novel static images, and then train discriminative models that exploit both streams of information. Our main contributions are twofold. First, we devise an encoder-decoder convolutional neural network and a novel optical flow encoding that can translate a static image into an accurate flow map. Second, we show the power of hallucinated flow for recognition, successfully transferring the learned motion into a standard two-stream network for activity recognition. On seven datasets, we demonstrate the power of the approach. It not only achieves state-of-the-art accuracy for dense optical flow prediction, but also consistently enhances recognition of actions and dynamic scenes.Comment: Published in CVPR 2018, project page: http://vision.cs.utexas.edu/projects/im2flow

    Towards Geometric Understanding of Motion

    Get PDF
    The motion of the world is inherently dependent on the spatial structure of the world and its geometry. Therefore, classical optical flow methods try to model this geometry to solve for the motion. However, recent deep learning methods take a completely different approach. They try to predict optical flow by learning from labelled data. Although deep networks have shown state-of-the-art performance on classification problems in computer vision, they have not been as effective in solving optical flow. The key reason is that deep learning methods do not explicitly model the structure of the world in a neural network, and instead expect the network to learn about the structure from data. We hypothesize that it is difficult for a network to learn about motion without any constraint on the structure of the world. Therefore, we explore several approaches to explicitly model the geometry of the world and its spatial structure in deep neural networks. The spatial structure in images can be captured by representing it at multiple scales. To represent multiple scales of images in deep neural nets, we introduce a Spatial Pyramid Network (SpyNet). Such a network can leverage global information for estimating large motions and local information for estimating small motions. We show that SpyNet significantly improves over previous optical flow networks while also being the smallest and fastest neural network for motion estimation. SPyNet achieves a 97% reduction in model parameters over previous methods and is more accurate. The spatial structure of the world extends to people and their motion. Humans have a very well-defined structure, and this information is useful in estimating optical flow for humans. To leverage this information, we create a synthetic dataset for human optical flow using a statistical human body model and motion capture sequences. We use this dataset to train deep networks and see significant improvement in the ability of the networks to estimate human optical flow. The structure and geometry of the world affects the motion. Therefore, learning about the structure of the scene together with the motion can benefit both problems. To facilitate this, we introduce Competitive Collaboration, where several neural networks are constrained by geometry and can jointly learn about structure and motion in the scene without any labels. To this end, we show that jointly learning single view depth prediction, camera motion, optical flow and motion segmentation using Competitive Collaboration achieves state-of-the-art results among unsupervised approaches. Our findings provide support for our hypothesis that explicit constraints on structure and geometry of the world lead to better methods for motion estimation

    Optical Flow Estimation in the Deep Learning Age

    Full text link
    Akin to many subareas of computer vision, the recent advances in deep learning have also significantly influenced the literature on optical flow. Previously, the literature had been dominated by classical energy-based models, which formulate optical flow estimation as an energy minimization problem. However, as the practical benefits of Convolutional Neural Networks (CNNs) over conventional methods have become apparent in numerous areas of computer vision and beyond, they have also seen increased adoption in the context of motion estimation to the point where the current state of the art in terms of accuracy is set by CNN approaches. We first review this transition as well as the developments from early work to the current state of CNNs for optical flow estimation. Alongside, we discuss some of their technical details and compare them to recapitulate which technical contribution led to the most significant accuracy improvements. Then we provide an overview of the various optical flow approaches introduced in the deep learning age, including those based on alternative learning paradigms (e.g., unsupervised and semi-supervised methods) as well as the extension to the multi-frame case, which is able to yield further accuracy improvements.Comment: To appear as a book chapter in Modelling Human Motion, N. Noceti, A. Sciutti and F. Rea, Eds., Springer, 202

    Learning Optical Flow, Depth, and Scene Flow without Real-World Labels

    Full text link
    Self-supervised monocular depth estimation enables robots to learn 3D perception from raw video streams. This scalable approach leverages projective geometry and ego-motion to learn via view synthesis, assuming the world is mostly static. Dynamic scenes, which are common in autonomous driving and human-robot interaction, violate this assumption. Therefore, they require modeling dynamic objects explicitly, for instance via estimating pixel-wise 3D motion, i.e. scene flow. However, the simultaneous self-supervised learning of depth and scene flow is ill-posed, as there are infinitely many combinations that result in the same 3D point. In this paper we propose DRAFT, a new method capable of jointly learning depth, optical flow, and scene flow by combining synthetic data with geometric self-supervision. Building upon the RAFT architecture, we learn optical flow as an intermediate task to bootstrap depth and scene flow learning via triangulation. Our algorithm also leverages temporal and geometric consistency losses across tasks to improve multi-task learning. Our DRAFT architecture simultaneously establishes a new state of the art in all three tasks in the self-supervised monocular setting on the standard KITTI benchmark. Project page: https://sites.google.com/tri.global/draft.Comment: Accepted to RA-L + ICRA 202
    corecore