63 research outputs found

    Learning household task knowledge from WikiHow descriptions

    Get PDF
    Commonsense procedural knowledge is important for AI agents and robots that operate in a human environment. While previous attempts at constructing procedural knowledge are mostly rule- and template-based, recent advances in deep learning provide the possibility of acquiring such knowledge directly from natural language sources. As a first step in this direction, we propose a model to learn embeddings for tasks, as well as the individual steps that need to be taken to solve them, based on WikiHow articles. We learn these embeddings such that they are predictive of both step relevance and step ordering. We also experiment with the use of integer programming for inferring consistent global step orderings from noisy pairwise predictions.Comment: IJCAI 2019 Workshop on Semantic Deep Learnin

    A Dataset for Tracking Entities in Open Domain Procedural Text

    Full text link
    We present the first dataset for tracking state changes in procedural text from arbitrary domains by using an unrestricted (open) vocabulary. For example, in a text describing fog removal using potatoes, a car window may transition between being foggy, sticky,opaque, and clear. Previous formulations of this task provide the text and entities involved,and ask how those entities change for just a small, pre-defined set of attributes (e.g., location), limiting their fidelity. Our solution is a new task formulation where given just a procedural text as input, the task is to generate a set of state change tuples(entity, at-tribute, before-state, after-state)for each step,where the entity, attribute, and state values must be predicted from an open vocabulary. Using crowdsourcing, we create OPENPI1, a high-quality (91.5% coverage as judged by humans and completely vetted), and large-scale dataset comprising 29,928 state changes over 4,050 sentences from 810 procedural real-world paragraphs from WikiHow.com. A current state-of-the-art generation model on this task achieves 16.1% F1 based on BLEU metric, leaving enough room for novel model architectures.Comment: To appear in EMNLP 202

    Benchmarking Procedural Language Understanding for Low-Resource Languages: A Case Study on Turkish

    Full text link
    Understanding procedural natural language (e.g., step-by-step instructions) is a crucial step to execution and planning. However, while there are ample corpora and downstream tasks available in English, the field lacks such resources for most languages. To address this gap, we conduct a case study on Turkish procedural texts. We first expand the number of tutorials in Turkish wikiHow from 2,000 to 52,000 using automated translation tools, where the translation quality and loyalty to the original meaning are validated by a team of experts on a random set. Then, we generate several downstream tasks on the corpus, such as linking actions, goal inference, and summarization. To tackle these tasks, we implement strong baseline models via fine-tuning large language-specific models such as TR-BART and BERTurk, as well as multilingual models such as mBART, mT5, and XLM. We find that language-specific models consistently outperform their multilingual models by a significant margin across most procedural language understanding (PLU) tasks. We release our corpus, downstream tasks and the baseline models with https://github.com/ GGLAB-KU/turkish-plu.Comment: 9 page

    Multimedia Generative Script Learning for Task Planning

    Full text link
    Goal-oriented generative script learning aims to generate subsequent steps to reach a particular goal, which is an essential task to assist robots or humans in performing stereotypical activities. An important aspect of this process is the ability to capture historical states visually, which provides detailed information that is not covered by text and will guide subsequent steps. Therefore, we propose a new task, Multimedia Generative Script Learning, to generate subsequent steps by tracking historical states in both text and vision modalities, as well as presenting the first benchmark containing 5,652 tasks and 79,089 multimedia steps. This task is challenging in three aspects: the multimedia challenge of capturing the visual states in images, the induction challenge of performing unseen tasks, and the diversity challenge of covering different information in individual steps. We propose to encode visual state changes through a selective multimedia encoder to address the multimedia challenge, transfer knowledge from previously observed tasks using a retrieval-augmented decoder to overcome the induction challenge, and further present distinct information at each step by optimizing a diversity-oriented contrastive learning objective. We define metrics to evaluate both generation and inductive quality. Experiment results demonstrate that our approach significantly outperforms strong baselines.Comment: 21 pages, Accepted by Findings of the Association for Computational Linguistics: ACL 2023, Code and Resources at https://github.com/EagleW/Multimedia-Generative-Script-Learnin

    Context-Independent Task Knowledge for Neurosymbolic Reasoning in Cognitive Robotics

    Get PDF
    One of the current main goals of artificial intelligence and robotics research is the creation of an artificial assistant which can have flexible, human like behavior, in order to accomplish everyday tasks. A lot of what is context-independent task knowledge to the human is what enables this flexibility at multiple levels of cognition. In this scope the author analyzes how to acquire, represent and disambiguate symbolic knowledge representing context-independent task knowledge, abstracted from multiple instances: this thesis elaborates the incurred problems, implementation constraints, current state-of-the-art practices and ultimately the solutions newly introduced in this scope. The author specifically discusses acquisition of context-independent task knowledge from large amounts of human-written texts and their reusability in the robotics domain; the acquisition of knowledge on human musculoskeletal dependencies constraining motion which allows a better higher level representation of observed trajectories; the means of verbalization of partial contextual and instruction knowledge, increasing interaction possibilities with the human as well as contextual adaptation. All the aforementioned points are supported by evaluation in heterogeneous setups, to bring a view on how to make optimal use of statistical & symbolic applications (i.e. neurosymbolic reasoning) in cognitive robotics. This work has been performed to enable context-adaptable artificial assistants, by bringing together knowledge on what is usually regarded as context-independent task knowledge
    corecore