6 research outputs found

    Learning Hierarchical and Topographic Dictionaries with Structured Sparsity

    Full text link
    Recent work in signal processing and statistics have focused on defining new regularization functions, which not only induce sparsity of the solution, but also take into account the structure of the problem. We present in this paper a class of convex penalties introduced in the machine learning community, which take the form of a sum of l_2 and l_infinity-norms over groups of variables. They extend the classical group-sparsity regularization in the sense that the groups possibly overlap, allowing more flexibility in the group design. We review efficient optimization methods to deal with the corresponding inverse problems, and their application to the problem of learning dictionaries of natural image patches: On the one hand, dictionary learning has indeed proven effective for various signal processing tasks. On the other hand, structured sparsity provides a natural framework for modeling dependencies between dictionary elements. We thus consider a structured sparse regularization to learn dictionaries embedded in a particular structure, for instance a tree or a two-dimensional grid. In the latter case, the results we obtain are similar to the dictionaries produced by topographic independent component analysis

    Learning Hierarchical and Topographic Dictionaries with Structured Sparsity

    Get PDF
    International audienceRecent work in signal processing and statistics have focused on defining new regularization functions, which not only induce sparsity of the solution, but also take into account the structure of the problem. We present in this paper a class of convex penalties introduced in the machine learning community, which take the form of a sum of l_2 and l_infinity-norms over groups of variables. They extend the classical group-sparsity regularization in the sense that the groups possibly overlap, allowing more flexibility in the group design. We review efficient optimization methods to deal with the corresponding inverse problems, and their application to the problem of learning dictionaries of natural image patches: On the one hand, dictionary learning has indeed proven effective for various signal processing tasks. On the other hand, structured sparsity provides a natural framework for modeling dependencies between dictionary elements. We thus consider a structured sparse regularization to learn dictionaries embedded in a particular structure, for instance a tree or a two-dimensional grid. In the latter case, the results we obtain are similar to the dictionaries produced by topographic independent component analysis

    Detection and classification of non-stationary signals using sparse representations in adaptive dictionaries

    Get PDF
    Automatic classification of non-stationary radio frequency (RF) signals is of particular interest in persistent surveillance and remote sensing applications. Such signals are often acquired in noisy, cluttered environments, and may be characterized by complex or unknown analytical models, making feature extraction and classification difficult. This thesis proposes an adaptive classification approach for poorly characterized targets and backgrounds based on sparse representations in non-analytical dictionaries learned from data. Conventional analytical orthogonal dictionaries, e.g., Short Time Fourier and Wavelet Transforms, can be suboptimal for classification of non-stationary signals, as they provide a rigid tiling of the time-frequency space, and are not specifically designed for a particular signal class. They generally do not lead to sparse decompositions (i.e., with very few non-zero coefficients), and use in classification requires separate feature selection algorithms. Pursuit-type decompositions in analytical overcomplete (non-orthogonal) dictionaries yield sparse representations, by design, and work well for signals that are similar to the dictionary elements. The pursuit search, however, has a high computational cost, and the method can perform poorly in the presence of realistic noise and clutter. One such overcomplete analytical dictionary method is also analyzed in this thesis for comparative purposes. The main thrust of the thesis is learning discriminative RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics. A pursuit search is used over the learned dictionaries to generate sparse classification features in order to identify time windows that contain a target pulse. Two state-of-the-art dictionary learning methods are compared, the K-SVD algorithm and Hebbian learning, in terms of their classification performance as a function of dictionary training parameters. Additionally, a novel hybrid dictionary algorithm is introduced, demonstrating better performance and higher robustness to noise. The issue of dictionary dimensionality is explored and this thesis demonstrates that undercomplete learned dictionaries are suitable for non-stationary RF classification. Results on simulated data sets with varying background clutter and noise levels are presented. Lastly, unsupervised classification with undercomplete learned dictionaries is also demonstrated in satellite imagery analysis

    Learning Hierarchical and Topographic Dictionaries with Structured Sparsity

    Get PDF
    Recent work in signal processing and statistics have focused on defining new regularization functions, which not only induce sparsity of the solution, but also take into account the structure of the problem. 1–7 We present in this paper a class of convex penalties introduced in the machine learning community, which take the form of a sum of ℓ2- and ℓ∞norms over groups of variables. They extend the classical group-sparsity regularization8–10 in the sense that the groups possibly overlap, allowing more flexibility in the group design. We review efficient optimization methods to deal with the corresponding inverse problems, 11–13 and their application to the problem of learning dictionaries of natural image patches: 14–18 On the one hand, dictionary learning has indeed proven effective for various signal processing tasks. 17, 19 On the other hand, structured sparsity provides a natural framework for modeling dependencies between dictionary elements. We thus consider a structured sparse regularization to learn dictionaries embedded in a particular structure, for instance a tree11 or a two-dimensional grid. 20 In the latter case, the results we obtain are similar to the dictionaries produced by topographic independent component analysis

    Learning hierarchical and topographic dictionaries with structured sparsity

    No full text
    corecore