3 research outputs found

    Just in Time: Personal Temporal Insights for Altering Model Decisions

    Full text link
    The interpretability of complex Machine Learning models is coming to be a critical social concern, as they are increasingly used in human-related decision-making processes such as resume filtering or loan applications. Individuals receiving an undesired classification are likely to call for an explanation -- preferably one that specifies what they should do in order to alter that decision when they reapply in the future. Existing work focuses on a single ML model and a single point in time, whereas in practice, both models and data evolve over time: an explanation for an application rejection in 2018 may be irrelevant in 2019 since in the meantime both the model and the applicant's data can change. To this end, we propose a novel framework that provides users with insights and plans for changing their classification in particular future time points. The solution is based on combining state-of-the-art algorithms for (single) model explanations, ones for predicting future models, and database-style querying of the obtained explanations. We propose to demonstrate the usefulness of our solution in the context of loan applications, and interactively engage the audience in computing and viewing suggestions tailored for applicants based on their unique characteristic

    Learning Future Classifiers without Additional Data

    No full text
    We propose probabilistic models for predicting future classifiers given labeled data with timestamps collected until the current time. In some applications, the decision boundary changes over time. For example, in spam mail classification, spammers continuously create new spam mails to overcome spam filters, and therefore, the decision boundary that classifies spam or non-spam can vary. Existing methods require additional labeled and/or unlabeled data to learn a time-evolving decision boundary. However, collecting these data can be expensive or impossible. By incorporating time-series models to capture the dynamics of a decision boundary, the proposed model can predict future classifiers without additional data. We developed two learning algorithms for the proposed model on the basis of variational Bayesian inference. The effectiveness of the proposed method is demonstrated with experiments using synthetic and real-world data sets
    corecore