671 research outputs found

    Exploiting Semantic Embedding And Visual Feature For Facial Action Unit Detection

    Get PDF
    Recent study on detecting facial action units (AU) has utilized auxiliary information (i.e., facial landmarks, relationship among AUs and expressions, web facial images, etc.), in order to improve the AU detection performance. As of now, no semantic information of AUs has yet been explored for such a task. As a matter of fact, AU semantic descriptions provide much more information than the binary AU labels alone, thus we propose to exploit the Semantic Embedding and Visual feature (SEV-Net) for AU detection. More specifically, AU semantic embeddings are obtained through both Intra-AU and Inter-AU attention modules, where the Intra-AU attention module captures the relation among words within each sentence that describes individual AU, and the Inter-AU attention module focuses on the relation among those sentences. The learned AU semantic embeddings are then used as guidance for the generation of attention maps through a cross-modality attention network. The generated cross-modality attention maps are further used as weights for the aggregated feature. Our proposed method is unique in that the semantic features are exploited as the first of this kind. The approach has been evaluated on three public AU-coded facial expression databases and has achieved a superior performance than the state-of-the-art peer methods

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text
    • …
    corecore