10 research outputs found

    Learning Dynamic Generator Model by Alternating Back-Propagation Through Time

    Full text link
    This paper studies the dynamic generator model for spatial-temporal processes such as dynamic textures and action sequences in video data. In this model, each time frame of the video sequence is generated by a generator model, which is a non-linear transformation of a latent state vector, where the non-linear transformation is parametrized by a top-down neural network. The sequence of latent state vectors follows a non-linear auto-regressive model, where the state vector of the next frame is a non-linear transformation of the state vector of the current frame as well as an independent noise vector that provides randomness in the transition. The non-linear transformation of this transition model can be parametrized by a feedforward neural network. We show that this model can be learned by an alternating back-propagation through time algorithm that iteratively samples the noise vectors and updates the parameters in the transition model and the generator model. We show that our training method can learn realistic models for dynamic textures and action patterns.Comment: 10 page

    Dynamic Variational Autoencoders for Visual Process Modeling

    Full text link
    This work studies the problem of modeling visual processes by leveraging deep generative architectures for learning linear, Gaussian representations from observed sequences. We propose a joint learning framework, combining a vector autoregressive model and Variational Autoencoders. This results in an architecture that allows Variational Autoencoders to simultaneously learn a non-linear observation as well as a linear state model from sequences of frames. We validate our approach on artificial sequences and dynamic textures

    Motion-Based Generator Model: Unsupervised Disentanglement of Appearance, Trackable and Intrackable Motions in Dynamic Patterns

    Full text link
    Dynamic patterns are characterized by complex spatial and motion patterns. Understanding dynamic patterns requires a disentangled representational model that separates the factorial components. A commonly used model for dynamic patterns is the state space model, where the state evolves over time according to a transition model and the state generates the observed image frames according to an emission model. To model the motions explicitly, it is natural for the model to be based on the motions or the displacement fields of the pixels. Thus in the emission model, we let the hidden state generate the displacement field, which warps the trackable component in the previous image frame to generate the next frame while adding a simultaneously emitted residual image to account for the change that cannot be explained by the deformation. The warping of the previous image is about the trackable part of the change of image frame, while the residual image is about the intrackable part of the image. We use a maximum likelihood algorithm to learn the model that iterates between inferring latent noise vectors that drive the transition model and updating the parameters given the inferred latent vectors. Meanwhile we adopt a regularization term to penalize the norms of the residual images to encourage the model to explain the change of image frames by trackable motion. Unlike existing methods on dynamic patterns, we learn our model in unsupervised setting without ground truth displacement fields. In addition, our model defines a notion of intrackability by the separation of warped component and residual component in each image frame. We show that our method can synthesize realistic dynamic pattern, and disentangling appearance, trackable and intrackable motions. The learned models are useful for motion transfer, and it is natural to adopt it to define and measure intrackability of a dynamic pattern

    Kernelized Similarity Learning and Embedding for Dynamic Texture Synthesis

    Full text link
    Dynamic texture (DT) exhibits statistical stationarity in the spatial domain and stochastic repetitiveness in the temporal dimension, indicating that different frames of DT possess a high similarity correlation that is critical prior knowledge. However, existing methods cannot effectively learn a promising synthesis model for high-dimensional DT from a small number of training data. In this paper, we propose a novel DT synthesis method, which makes full use of similarity prior knowledge to address this issue. Our method bases on the proposed kernel similarity embedding, which not only can mitigate the high-dimensionality and small sample issues, but also has the advantage of modeling nonlinear feature relationship. Specifically, we first raise two hypotheses that are essential for DT model to generate new frames using similarity correlation. Then, we integrate kernel learning and extreme learning machine into a unified synthesis model to learn kernel similarity embedding for representing DT. Extensive experiments on DT videos collected from the internet and two benchmark datasets, i.e., Gatech Graphcut Textures and Dyntex, demonstrate that the learned kernel similarity embedding can effectively exhibit the discriminative representation for DT. Accordingly, our method is capable of preserving the long-term temporal continuity of the synthesized DT sequences with excellent sustainability and generalization. Meanwhile, it effectively generates realistic DT videos with fast speed and low computation, compared with the state-of-the-art methods. The code and more synthesis videos are available at our project page https://shiming-chen.github.io/Similarity-page/Similarit.html.Comment: 13 pages, 12 figures, 2 table

    A Tale of Two Latent Flows: Learning Latent Space Normalizing Flow with Short-run Langevin Flow for Approximate Inference

    Full text link
    We study a normalizing flow in the latent space of a top-down generator model, in which the normalizing flow model plays the role of the informative prior model of the generator. We propose to jointly learn the latent space normalizing flow prior model and the top-down generator model by a Markov chain Monte Carlo (MCMC)-based maximum likelihood algorithm, where a short-run Langevin sampling from the intractable posterior distribution is performed to infer the latent variables for each observed example, so that the parameters of the normalizing flow prior and the generator can be updated with the inferred latent variables. We show that, under the scenario of non-convergent short-run MCMC, the finite step Langevin dynamics is a flow-like approximate inference model and the learning objective actually follows the perturbation of the maximum likelihood estimation (MLE). We further point out that the learning framework seeks to (i) match the latent space normalizing flow and the aggregated posterior produced by the short-run Langevin flow, and (ii) bias the model from MLE such that the short-run Langevin flow inference is close to the true posterior. Empirical results of extensive experiments validate the effectiveness of the proposed latent space normalizing flow model in the tasks of image generation, image reconstruction, anomaly detection, supervised image inpainting and unsupervised image recovery.Comment: The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI) 202

    Learning Dynamic Generator Model by Alternating Back-Propagation through Time

    No full text
    corecore