13,371 research outputs found

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Sketch-based 3D Shape Retrieval using Convolutional Neural Networks

    Full text link
    Retrieving 3D models from 2D human sketches has received considerable attention in the areas of graphics, image retrieval, and computer vision. Almost always in state of the art approaches a large amount of "best views" are computed for 3D models, with the hope that the query sketch matches one of these 2D projections of 3D models using predefined features. We argue that this two stage approach (view selection -- matching) is pragmatic but also problematic because the "best views" are subjective and ambiguous, which makes the matching inputs obscure. This imprecise nature of matching further makes it challenging to choose features manually. Instead of relying on the elusive concept of "best views" and the hand-crafted features, we propose to define our views using a minimalism approach and learn features for both sketches and views. Specifically, we drastically reduce the number of views to only two predefined directions for the whole dataset. Then, we learn two Siamese Convolutional Neural Networks (CNNs), one for the views and one for the sketches. The loss function is defined on the within-domain as well as the cross-domain similarities. Our experiments on three benchmark datasets demonstrate that our method is significantly better than state of the art approaches, and outperforms them in all conventional metrics.Comment: CVPR 201
    • …
    corecore