943 research outputs found

    Learning dialogue POMDP model components from expert dialogues

    Get PDF
    Un système de dialogue conversationnel doit aider les utilisateurs humains à atteindre leurs objectifs à travers des dialogues naturels et efficients. C'est une tache toutefois difficile car les langages naturels sont ambiguës et incertains, de plus le système de reconnaissance vocale (ASR) est bruité. À cela s'ajoute le fait que l'utilisateur humain peut changer son intention lors de l'interaction avec la machine. Dans ce contexte, l'application des processus décisionnels de Markov partiellement observables (POMDPs) au système de dialogue conversationnel nous a permis d'avoir un cadre formel pour représenter explicitement les incertitudes, et automatiser la politique d'optimisation. L'estimation des composantes du modelé d'un POMDP-dialogue constitue donc un défi important, car une telle estimation a un impact direct sur la politique d'optimisation du POMDP-dialogue. Cette thèse propose des méthodes d'apprentissage des composantes d'un POMDPdialogue basées sur des dialogues bruités et sans annotation. Pour cela, nous présentons des méthodes pour apprendre les intentions possibles des utilisateurs à partir des dialogues, en vue de les utiliser comme états du POMDP-dialogue, et l'apprendre un modèle du maximum de vraisemblance à partir des données, pour transition du POMDP. Car c'est crucial de réduire la taille d'état d'observation, nous proposons également deux modèles d'observation: le modelé mot-clé et le modelé intention. Dans les deux modèles, le nombre d'observations est réduit significativement tandis que le rendement reste élevé, particulièrement dans le modele d'observation intention. En plus de ces composantes du modèle, les POMDPs exigent également une fonction de récompense. Donc, nous proposons de nouveaux algorithmes pour l'apprentissage du modele de récompenses, un apprentissage qui est basé sur le renforcement inverse (IRL). En particulier, nous proposons POMDP-IRL-BT qui fonctionne sur les états de croyance disponibles dans les dialogues du corpus. L'algorithme apprend le modele de récompense par l'estimation du modele de transition de croyance, semblable aux modèles de transition des états dans un MDP (processus décisionnel de Markov). Finalement, nous appliquons les méthodes proposées à un domaine de la santé en vue d'apprendre un POMDP-dialogue et ce essentiellement à partir de dialogues réels, bruités, et sans annotations.Spoken dialogue systems should realize the user intentions and maintain a natural and efficient dialogue with users. This is however a difficult task as spoken language is naturally ambiguous and uncertain, and further the automatic speech recognition (ASR) output is noisy. In addition, the human user may change his intention during the interaction with the machine. To tackle this difficult task, the partially observable Markov decision process (POMDP) framework has been applied in dialogue systems as a formal framework to represent uncertainty explicitly while supporting automated policy solving. In this context, estimating the dialogue POMDP model components is a signifficant challenge as they have a direct impact on the optimized dialogue POMDP policy. This thesis proposes methods for learning dialogue POMDP model components using noisy and unannotated dialogues. Speciffically, we introduce techniques to learn the set of possible user intentions from dialogues, use them as the dialogue POMDP states, and learn a maximum likelihood POMDP transition model from data. Since it is crucial to reduce the observation state size, we then propose two observation models: the keyword model and the intention model. Using these two models, the number of observations is reduced signifficantly while the POMDP performance remains high particularly in the intention POMDP. In addition to these model components, POMDPs also require a reward function. So, we propose new algorithms for learning the POMDP reward model from dialogues based on inverse reinforcement learning (IRL). In particular, we propose the POMDP-IRL-BT algorithm (BT for belief transition) that works on the belief states available in the dialogues. This algorithm learns the reward model by estimating a belief transition model, similar to MDP (Markov decision process) transition models. Ultimately, we apply the proposed methods on a healthcare domain and learn a dialogue POMDP essentially from real unannotated and noisy dialogues

    Relational Approach to Knowledge Engineering for POMDP-based Assistance Systems as a Translation of a Psychological Model

    Get PDF
    Assistive systems for persons with cognitive disabilities (e.g. dementia) are difficult to build due to the wide range of different approaches people can take to accomplishing the same task, and the significant uncertainties that arise from both the unpredictability of client's behaviours and from noise in sensor readings. Partially observable Markov decision process (POMDP) models have been used successfully as the reasoning engine behind such assistive systems for small multi-step tasks such as hand washing. POMDP models are a powerful, yet flexible framework for modelling assistance that can deal with uncertainty and utility. Unfortunately, POMDPs usually require a very labour intensive, manual procedure for their definition and construction. Our previous work has described a knowledge driven method for automatically generating POMDP activity recognition and context sensitive prompting systems for complex tasks. We call the resulting POMDP a SNAP (SyNdetic Assistance Process). The spreadsheet-like result of the analysis does not correspond to the POMDP model directly and the translation to a formal POMDP representation is required. To date, this translation had to be performed manually by a trained POMDP expert. In this paper, we formalise and automate this translation process using a probabilistic relational model (PRM) encoded in a relational database. We demonstrate the method by eliciting three assistance tasks from non-experts. We validate the resulting POMDP models using case-based simulations to show that they are reasonable for the domains. We also show a complete case study of a designer specifying one database, including an evaluation in a real-life experiment with a human actor

    Reward Shaping with Recurrent Neural Networks for Speeding up On-Line Policy Learning in Spoken Dialogue Systems

    Full text link
    Statistical spoken dialogue systems have the attractive property of being able to be optimised from data via interactions with real users. However in the reinforcement learning paradigm the dialogue manager (agent) often requires significant time to explore the state-action space to learn to behave in a desirable manner. This is a critical issue when the system is trained on-line with real users where learning costs are expensive. Reward shaping is one promising technique for addressing these concerns. Here we examine three recurrent neural network (RNN) approaches for providing reward shaping information in addition to the primary (task-orientated) environmental feedback. These RNNs are trained on returns from dialogues generated by a simulated user and attempt to diffuse the overall evaluation of the dialogue back down to the turn level to guide the agent towards good behaviour faster. In both simulated and real user scenarios these RNNs are shown to increase policy learning speed. Importantly, they do not require prior knowledge of the user's goal.Comment: Accepted for publication in SigDial 201

    Deep Reinforcement Learning for Dialogue Generation

    Full text link
    Recent neural models of dialogue generation offer great promise for generating responses for conversational agents, but tend to be shortsighted, predicting utterances one at a time while ignoring their influence on future outcomes. Modeling the future direction of a dialogue is crucial to generating coherent, interesting dialogues, a need which led traditional NLP models of dialogue to draw on reinforcement learning. In this paper, we show how to integrate these goals, applying deep reinforcement learning to model future reward in chatbot dialogue. The model simulates dialogues between two virtual agents, using policy gradient methods to reward sequences that display three useful conversational properties: informativity (non-repetitive turns), coherence, and ease of answering (related to forward-looking function). We evaluate our model on diversity, length as well as with human judges, showing that the proposed algorithm generates more interactive responses and manages to foster a more sustained conversation in dialogue simulation. This work marks a first step towards learning a neural conversational model based on the long-term success of dialogues
    • …
    corecore