8,338 research outputs found

    Learning deep features for kNN-based human activity recognition.

    Get PDF
    A CBR approach to Human Activity Recognition (HAR) uses the kNN algorithm to classify sensor data into different activity classes. Different feature representation approaches have been proposed for sensor data for the purpose of HAR. These include shallow features, which can either be hand-crafted from the time and frequency domains, or the coefficients of frequency transformations. Alternatively, deep features can be extracted using deep learning approches. These different representation approaches have been compared in previous works without a consistent best approach being identified. In this paper, we explore the question of which representation approach is best for kNN. Accordingly, we compare 5 different feature representation approaches (ranging from shallow to deep) on accelerometer data collected from two body locations, wrist and thigh. Results show deep features to produce the best results for kNN, compared to both hand-crafted and frequency transform, by a margin of up to 6.5% on the wrist and over 2.2% on the thigh. In addition, kNN produces very good results with as little as a single epoch of training for the deep features

    Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach

    Get PDF
    Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR

    Toward explainable AI-empowered cognitive health assessment

    Get PDF
    Explainable artificial intelligence (XAI) is of paramount importance to various domains, including healthcare, fitness, skill assessment, and personal assistants, to understand and explain the decision-making process of the artificial intelligence (AI) model. Smart homes embedded with smart devices and sensors enabled many context-aware applications to recognize physical activities. This study presents XAI-HAR, a novel XAI-empowered human activity recognition (HAR) approach based on key features identified from the data collected from sensors located at different places in a smart home. XAI-HAR identifies a set of new features (i.e., the total number of sensors used in a specific activity), as physical key features selection (PKFS) based on weighting criteria. Next, it presents statistical key features selection (SKFS) (i.e., mean, standard deviation) to handle the outliers and higher class variance. The proposed XAI-HAR is evaluated using machine learning models, namely, random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), naive Bayes (NB) and deep learning models such as deep neural network (DNN), convolution neural network (CNN), and CNN-based long short-term memory (CNN-LSTM). Experiments demonstrate the superior performance of XAI-HAR using RF classifier over all other machine learning and deep learning models. For explainability, XAI-HAR uses Local Interpretable Model Agnostic (LIME) with an RF classifier. XAI-HAR achieves 0.96% of F-score for health and dementia classification and 0.95 and 0.97% for activity recognition of dementia and healthy individuals, respectively.This research was supported by Qatar National Library and Qatar University's Internal Grant IRCC-2021-010

    Kervolutional Neural Networks

    Full text link
    Convolutional neural networks (CNNs) have enabled the state-of-the-art performance in many computer vision tasks. However, little effort has been devoted to establishing convolution in non-linear space. Existing works mainly leverage on the activation layers, which can only provide point-wise non-linearity. To solve this problem, a new operation, kervolution (kernel convolution), is introduced to approximate complex behaviors of human perception systems leveraging on the kernel trick. It generalizes convolution, enhances the model capacity, and captures higher order interactions of features, via patch-wise kernel functions, but without introducing additional parameters. Extensive experiments show that kervolutional neural networks (KNN) achieve higher accuracy and faster convergence than baseline CNN.Comment: oral paper in CVPR 201

    Converting Your Thoughts to Texts: Enabling Brain Typing via Deep Feature Learning of EEG Signals

    Full text link
    An electroencephalography (EEG) based Brain Computer Interface (BCI) enables people to communicate with the outside world by interpreting the EEG signals of their brains to interact with devices such as wheelchairs and intelligent robots. More specifically, motor imagery EEG (MI-EEG), which reflects a subjects active intent, is attracting increasing attention for a variety of BCI applications. Accurate classification of MI-EEG signals while essential for effective operation of BCI systems, is challenging due to the significant noise inherent in the signals and the lack of informative correlation between the signals and brain activities. In this paper, we propose a novel deep neural network based learning framework that affords perceptive insights into the relationship between the MI-EEG data and brain activities. We design a joint convolutional recurrent neural network that simultaneously learns robust high-level feature presentations through low-dimensional dense embeddings from raw MI-EEG signals. We also employ an Autoencoder layer to eliminate various artifacts such as background activities. The proposed approach has been evaluated extensively on a large- scale public MI-EEG dataset and a limited but easy-to-deploy dataset collected in our lab. The results show that our approach outperforms a series of baselines and the competitive state-of-the- art methods, yielding a classification accuracy of 95.53%. The applicability of our proposed approach is further demonstrated with a practical BCI system for typing.Comment: 10 page

    Performance Analysis of Classification Algorithms for Activity Recognition using Micro-Doppler Feature

    Get PDF
    Classification of different human activities using micro-Doppler data and features is considered in this study, focusing on the distinction between walking and running. 240 recordings from 2 different human subjects were collected in a series of simulations performed in the real motion data from the Carnegie Mellon University Motion Capture Database. The maximum the micro-Doppler frequency shift and the period duration are utilized as two classification criterions. Numerical results are compared against several classification techniques including the Linear Discriminant Analysis (LDA), Naïve Bayes (NB), K-nearest neighbors (KNN), Support Vector Machine(SVM) algorithms. The performance of different classifiers is discussed aiming at identifying the most appropriate features for the walking and running classification
    corecore