59,639 research outputs found

    Advancing ensemble learning performance through data transformation and classifiers fusion in granular computing context

    Get PDF
    Classification is a special type of machine learning tasks, which is essentially achieved by training a classifier that can be used to classify new instances. In order to train a high performance classifier, it is crucial to extract representative features from raw data, such as text and images. In reality, instances could be highly diverse even if they belong to the same class, which indicates different instances of the same class could represent very different characteristics. For example, in a facial expression recognition task, some instances may be better described by Histogram of Oriented Gradients features, while others may be better presented by Local Binary Patterns features. From this point of view, it is necessary to adopt ensemble learning to train different classifiers on different feature sets and to fuse these classifiers towards more accurate classification of each instance. On the other hand, different algorithms are likely to show different suitability for training classifiers on different feature sets. It shows again the necessity to adopt ensemble learning towards advances in the classification performance. Furthermore, a multi-class classification task would become increasingly more complex when the number of classes is increased, i.e. it would lead to the increased difficulty in terms of discriminating different classes. In this paper, we propose an ensemble learning framework that involves transforming a multi-class classification task into a number of binary classification tasks and fusion of classifiers trained on different feature sets by using different learning algorithms. We report experimental studies on a UCI data set on Sonar and the CK+ data set on facial expression recognition. The results show that our proposed ensemble learning approach leads to considerable advances in classification performance, in comparison with popular learning approaches including decision tree ensembles and deep neural networks. In practice, the proposed approach can be used effectively to build an ensemble of ensembles acting as a group of expert systems, which show the capability to achieve more stable performance of pattern recognition, in comparison with building a single classifier that acts as a single expert system

    Multi-Modal Multi-Scale Deep Learning for Large-Scale Image Annotation

    Full text link
    Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation suitable for predicting a diverse set of visual concepts ranging from object, scene to abstract concept; 2) how to annotate an image with the optimal number of class labels. To address the first issue, we propose a novel multi-scale deep model for extracting rich and discriminative features capable of representing a wide range of visual concepts. Specifically, a novel two-branch deep neural network architecture is proposed which comprises a very deep main network branch and a companion feature fusion network branch designed for fusing the multi-scale features computed from the main branch. The deep model is also made multi-modal by taking noisy user-provided tags as model input to complement the image input. For tackling the second issue, we introduce a label quantity prediction auxiliary task to the main label prediction task to explicitly estimate the optimal label number for a given image. Extensive experiments are carried out on two large-scale image annotation benchmark datasets and the results show that our method significantly outperforms the state-of-the-art.Comment: Submited to IEEE TI

    Improving High Resolution Histology Image Classification with Deep Spatial Fusion Network

    Full text link
    Histology imaging is an essential diagnosis method to finalize the grade and stage of cancer of different tissues, especially for breast cancer diagnosis. Specialists often disagree on the final diagnosis on biopsy tissue due to the complex morphological variety. Although convolutional neural networks (CNN) have advantages in extracting discriminative features in image classification, directly training a CNN on high resolution histology images is computationally infeasible currently. Besides, inconsistent discriminative features often distribute over the whole histology image, which incurs challenges in patch-based CNN classification method. In this paper, we propose a novel architecture for automatic classification of high resolution histology images. First, an adapted residual network is employed to explore hierarchical features without attenuation. Second, we develop a robust deep fusion network to utilize the spatial relationship between patches and learn to correct the prediction bias generated from inconsistent discriminative feature distribution. The proposed method is evaluated using 10-fold cross-validation on 400 high resolution breast histology images with balanced labels and reports 95% accuracy on 4-class classification and 98.5% accuracy, 99.6% AUC on 2-class classification (carcinoma and non-carcinoma), which substantially outperforms previous methods and close to pathologist performance.Comment: 8 pages, MICCAI workshop preceeding

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin
    • …
    corecore