54,521 research outputs found

    Next challenges for adaptive learning systems

    Get PDF
    Learning from evolving streaming data has become a 'hot' research topic in the last decade and many adaptive learning algorithms have been developed. This research was stimulated by rapidly growing amounts of industrial, transactional, sensor and other business data that arrives in real time and needs to be mined in real time. Under such circumstances, constant manual adjustment of models is in-efficient and with increasing amounts of data is becoming infeasible. Nevertheless, adaptive learning models are still rarely employed in business applications in practice. In the light of rapidly growing structurally rich 'big data', new generation of parallel computing solutions and cloud computing services as well as recent advances in portable computing devices, this article aims to identify the current key research directions to be taken to bring the adaptive learning closer to application needs. We identify six forthcoming challenges in designing and building adaptive learning (pre-diction) systems: making adaptive systems scalable, dealing with realistic data, improving usability and trust, integrat-ing expert knowledge, taking into account various application needs, and moving from adaptive algorithms towards adaptive tools. Those challenges are critical for the evolving stream settings, as the process of model building needs to be fully automated and continuous.</jats:p

    Algorithm selection on data streams

    Get PDF
    We explore the possibilities of meta-learning on data streams, in particular algorithm selection. In a first experiment we calculate the characteristics of a small sample of a data stream, and try to predict which classifier performs best on the entire stream. This yields promising results and interesting patterns. In a second experiment, we build a meta-classifier that predicts, based on measurable data characteristics in a window of the data stream, the best classifier for the next window. The results show that this meta-algorithm is very competitive with state of the art ensembles, such as OzaBag, OzaBoost and Leveraged Bagging. The results of all experiments are made publicly available in an online experiment database, for the purpose of verifiability, reproducibility and generalizability

    Towards Meta-learning over Data Streams

    Get PDF
    Modern society produces vast streams of data. Many stream mining algorithms have been developed to capture general trends in these streams, and make predictions for future observations, but relatively little is known about which algorithms perform particularly well on which kinds of data. Moreover, it is possible that the characteristics of the data change over time, and thus that a different algorithm should be recommended at various points in time. Figure 1 illustrates this. As such, we are dealing with the Algorithm Selection Problem [9] in a data stream setting. Based on measurable meta-features from a window of observations from a data stream, a meta-algorithm is built that predicts the best classifier for the next window. Our results show that this meta-algorithm is competitive with state-of-the art data streaming ensembles, such as OzaBag [6], OzaBoost [6] and Leveraged Bagging [3]
    corecore