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Modern society produces vast streams of data. Many stream min-
ing algorithms have been developed to capture general trends in these
streams, and make predictions for future observations, but relatively
little is known about which algorithms perform particularly well on
which kinds of data. Moreover, it is possible that the characteris-
tics of the data change over time, and thus that a different algorithm
should be recommended at various points in time. Figure 1 illustrates
this. As such, we are dealing with the Algorithm Selection Prob-
lem [9] in a data stream setting. Based on measurable meta-features
from a window of observations from a data stream, a meta-algorithm
is built that predicts the best classifier for the next window. Our re-
sults show that this meta-algorithm is competitive with state-of-the-
art data streaming ensembles, such as OzaBag [6], OzaBoost [6]
and Leveraged Bagging [3].

We first construct a meta-dataset consisting of 49 data streams,
generated using various data stream generators from the MOA work-
bench [2], including the Rotating Hyperplane Generator and Random
RBF Generator. In addition, we use a newly created Bayesian Net-
work Generator, which takes a dataset as input, preferably consisting
of real-world data and a reasonable amount of features, and builds
a Bayesian Network using this dataset as input [12]. The Bayesian
Network is then used to generate a data stream, determining each
feature of each instance using the probability tables. These streams
all contain 1,000,000 instances. We also include commonly used
large datasets, such as Covertype, Pokerhand and the 20 Newsgroups
dataset.

We run three types of classifiers over these datasets [8]. These are
instance incremental classifiers, which learn from each example as
it arrives, batch incremental classifiers, which learn from batches of
examples, and ensembles of classifiers. The score of these classi-
fiers is recorded at each window of 1,000 instances. Furthermore,
we calculate various meta-features for all of these intervals, most
of which are described in [10]. These meta-features are typically
categorised as one of the following: simple (number of instances,
number of attributes, number of classes), statistical (mean standard
deviation of attributes, mean kurtosis of attributes, mean skewness
of attributes), information theoretic (class entropy, mean entropy of
attributes, noise-signal ratio) or landmarkers [7] (performance of
a simple classifier on the data). We also introduce stream-specific
meta-features based on change detection, which count the number of
changes detected by the ADWIN [1] and DDM [4] change detectors.

The results of all experiments, as well as the generated datasets,
classifiers used, and the meta-dataset itself, are available on
OpenML [11].
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Figure 1: Performance of four instance incremental classifiers on in-
tervals of the electricity dataset. Each interval contains 1,000 in-
stances.

We now aim to determine whether this meta-knowledge can im-
prove the predictive performance of data stream algorithms. We run a
sliding window of 1,000 examples over each of the base data streams,
and train a meta-algorithm using the meta-features and classifier
scores for that window to predict which classifier should be used in
the next window. The meta-algorithm is a Random Forest using
100 trees and 10 attributes, as implemented in Weka [5]. We distin-
guish between meta-level accuracy and base-level accuracy. Meta-
level accuracy indicates how the meta-algorithm performs on the
meta-learning task of predicting the best algorithm for a given win-
dow; base-level accuracy indicates how an ensemble of these base
classifiers would actually perform on the base data stream, using the
meta-algorithm to decide which base classifier to use for each win-
dow. The choice of meta-algorithm and the window size were deter-
mined experimentally.

Table 1 shows the results obtained from this experiment. We evalu-
ate how well the meta-learning selects between 13 base stream clas-
sifiers, listed in Table 2. All classifiers are run with the default pa-
rameter settings as selected in MOA [2]. As described above, we
can distinguish between three different types of stream mining algo-
rithms, and we evaluate how the meta-learning approach performs
within these subgroups as well.

Column A indicates the number of classifiers of each type,
also indicated in Table 2. Column “Majority” denotes which
classifier is the overall best in each group; here HT is short
for Hoeffding Trees, SMO stands for a Support Vector
Machine with a Polynomial Kernel and LB-HT means
Leveraged Bagging Hoeffding Trees. The column “Per-
centage” shows the percentage of 1,000-example windows where
this overall best algorithm wins. Since the meta-learner has to predict
which base classifier to use in each window, this value represents the
default accuracy of the meta-learning task.

Next, RFmeta shows the accuracy of the Random Forestmeta-
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Table 1: Results of algorithm selection in the stream setting.

Task A Majority Percentage RFmeta ZeroRbase RFbase MAXbase

Instance incremental 5 HT 59.75 80.78 80.98 84.07 84.59
Batch incremental 4 SMO 65.56 68.17 74.38 75.33 76.02
Ensembles 4 LB-HT 57.78 56.20 84.27 85.15 86.12
All classifiers 13 LB-HT 50.97 50.92 84.27 85.31 86.30

Table 2: Algorithms used in the experiments.

Key Classifier Type Parameters
NB NaiveBayes Instance incremental
SGD Stochastic Gradient Descent Instance incremental
SPeg SPegasus Instance incremental
k-NN k Nearest Neighbour Instance incremental k = 10, w = 1000
HT Hoeffding Tree Instance incremental
SMO Support Vector Machine / Polynomial Kernel Batch incremental w = 1000
J48 C4.5 Decision Tree Batch incremental w = 1000
REP Reduced-Error Pruning Decision Tree Batch incremental w = 1000
OneR One Rule Batch incremental w = 1000
LB-kNN Leveraging Bagging / k-NN Ensemble k = 10, n = 10, w = 1000
LB-HT Leveraging Bagging / Hoeffding Tree Ensemble n = 10
Bag-HT OzaBag / Hoeffding Tree Ensemble n = 10
Boost-HT OzaBoost / Hoeffding Tree Ensemble n = 10

classifier in predicting the best classifier for a given window. The
last three columns show the accuracy that can be obtained on the
base data stream using three different strategies. Column ZeroRbase

shows the accuracy obtained by always selecting the best overall base
classifier. For instance, the value in the “Ensembles” row shows the
accuracy of an ensemble of Leveraged Bagged Hoeffding
Trees, averaged over all data streams. RFbase shows the accuracy
obtained when the Random Forest meta-classifier predicts the
base classifier to be used in each window, again averaged over all
data streams. Finally, column MAXbase shows the accuracy obtained
if the meta-classifier always correctly predicted the best classifier for
each window. Intuitively, RFbase shows the performance of the meta-
classifier, ZeroRbase can be used as a baseline, and MAXbase shows
the maximum score that the meta-classifier could have obtained.

Determining the best instance incremental classifier yields good
results. In more than 80% of the cases, the correct classifier is
predicted. This also translates into good base-level performance.
An ensemble of our meta-classifier and only the 5 instance in-
cremental classifiers, which is markedly cheaper to train, yields
a score of 84.07%, which not only outperforms the best over-
all instance incremental classifier, a Hoeffding Tree with
80.98% accuracy, but is also comparable to the best overall base
classifier, a Leveraged Bagged Hoeffding Trees ensem-
ble (with 10 base-classifiers), which scores 84.27%. Moreover,
it also outperforms the other ensembles, OzaBag (82.58%) and
OzaBoost (80.55%). The Random Forest meta-learner has
more difficulty selecting among all 13 base-classifiers, which shows
room for progress, but even then it performs slightly better than the
overall best base classifier. Furthermore, the RFbase performances
are in many cases close to the maximal possible value, MAXbase. This
indicates that the main challenge is to find ways to improve this limit.
Better results are likely to be obtained using parameter optimisation,
and by using a larger set of algorithms.
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