1,660 research outputs found

    Learning using Local Membership Queries

    Full text link
    We introduce a new model of membership query (MQ) learning, where the learning algorithm is restricted to query points that are \emph{close} to random examples drawn from the underlying distribution. The learning model is intermediate between the PAC model (Valiant, 1984) and the PAC+MQ model (where the queries are allowed to be arbitrary points). Membership query algorithms are not popular among machine learning practitioners. Apart from the obvious difficulty of adaptively querying labelers, it has also been observed that querying \emph{unnatural} points leads to increased noise from human labelers (Lang and Baum, 1992). This motivates our study of learning algorithms that make queries that are close to examples generated from the data distribution. We restrict our attention to functions defined on the nn-dimensional Boolean hypercube and say that a membership query is local if its Hamming distance from some example in the (random) training data is at most O(log(n))O(\log(n)). We show the following results in this model: (i) The class of sparse polynomials (with coefficients in R) over {0,1}n\{0,1\}^n is polynomial time learnable under a large class of \emph{locally smooth} distributions using O(log(n))O(\log(n))-local queries. This class also includes the class of O(log(n))O(\log(n))-depth decision trees. (ii) The class of polynomial-sized decision trees is polynomial time learnable under product distributions using O(log(n))O(\log(n))-local queries. (iii) The class of polynomial size DNF formulas is learnable under the uniform distribution using O(log(n))O(\log(n))-local queries in time nO(log(log(n)))n^{O(\log(\log(n)))}. (iv) In addition we prove a number of results relating the proposed model to the traditional PAC model and the PAC+MQ model

    Comparative Experiments on Disambiguating Word Senses: An Illustration of the Role of Bias in Machine Learning

    Full text link
    This paper describes an experimental comparison of seven different learning algorithms on the problem of learning to disambiguate the meaning of a word from context. The algorithms tested include statistical, neural-network, decision-tree, rule-based, and case-based classification techniques. The specific problem tested involves disambiguating six senses of the word ``line'' using the words in the current and proceeding sentence as context. The statistical and neural-network methods perform the best on this particular problem and we discuss a potential reason for this observed difference. We also discuss the role of bias in machine learning and its importance in explaining performance differences observed on specific problems.Comment: 10 page

    Learning pseudo-Boolean k-DNF and Submodular Functions

    Full text link
    We prove that any submodular function f: {0,1}^n -> {0,1,...,k} can be represented as a pseudo-Boolean 2k-DNF formula. Pseudo-Boolean DNFs are a natural generalization of DNF representation for functions with integer range. Each term in such a formula has an associated integral constant. We show that an analog of Hastad's switching lemma holds for pseudo-Boolean k-DNFs if all constants associated with the terms of the formula are bounded. This allows us to generalize Mansour's PAC-learning algorithm for k-DNFs to pseudo-Boolean k-DNFs, and hence gives a PAC-learning algorithm with membership queries under the uniform distribution for submodular functions of the form f:{0,1}^n -> {0,1,...,k}. Our algorithm runs in time polynomial in n, k^{O(k \log k / \epsilon)}, 1/\epsilon and log(1/\delta) and works even in the agnostic setting. The line of previous work on learning submodular functions [Balcan, Harvey (STOC '11), Gupta, Hardt, Roth, Ullman (STOC '11), Cheraghchi, Klivans, Kothari, Lee (SODA '12)] implies only n^{O(k)} query complexity for learning submodular functions in this setting, for fixed epsilon and delta. Our learning algorithm implies a property tester for submodularity of functions f:{0,1}^n -> {0, ..., k} with query complexity polynomial in n for k=O((\log n/ \loglog n)^{1/2}) and constant proximity parameter \epsilon

    Efficient multi-label classification for evolving data streams

    Get PDF
    Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. This paper proposes a new experimental framework for studying multi-label evolving stream classification, and new efficient methods that combine the best practices in streaming scenarios with the best practices in multi-label classification. We present a Multi-label Hoeffding Tree with multilabel classifiers at the leaves as a base classifier. We obtain fast and accurate methods, that are well suited for this challenging multi-label classification streaming task. Using the new experimental framework, we test our methodology by performing an evaluation study on synthetic and real-world datasets. In comparison to well-known batch multi-label methods, we obtain encouraging results
    corecore