353 research outputs found

    Learning Counterfactual Representations for Estimating Individual Dose-Response Curves

    Full text link
    Estimating what would be an individual's potential response to varying levels of exposure to a treatment is of high practical relevance for several important fields, such as healthcare, economics and public policy. However, existing methods for learning to estimate counterfactual outcomes from observational data are either focused on estimating average dose-response curves, or limited to settings with only two treatments that do not have an associated dosage parameter. Here, we present a novel machine-learning approach towards learning counterfactual representations for estimating individual dose-response curves for any number of treatments with continuous dosage parameters with neural networks. Building on the established potential outcomes framework, we introduce performance metrics, model selection criteria, model architectures, and open benchmarks for estimating individual dose-response curves. Our experiments show that the methods developed in this work set a new state-of-the-art in estimating individual dose-response

    Deep Causal Learning for Robotic Intelligence

    Full text link
    This invited review discusses causal learning in the context of robotic intelligence. The paper introduced the psychological findings on causal learning in human cognition, then it introduced the traditional statistical solutions on causal discovery and causal inference. The paper reviewed recent deep causal learning algorithms with a focus on their architectures and the benefits of using deep nets and discussed the gap between deep causal learning and the needs of robotic intelligence

    De-confounding Representation Learning for Counterfactual Inference on Continuous Treatment via Generative Adversarial Network

    Full text link
    Counterfactual inference for continuous rather than binary treatment variables is more common in real-world causal inference tasks. While there are already some sample reweighting methods based on Marginal Structural Model for eliminating the confounding bias, they generally focus on removing the treatment's linear dependence on confounders and rely on the accuracy of the assumed parametric models, which are usually unverifiable. In this paper, we propose a de-confounding representation learning (DRL) framework for counterfactual outcome estimation of continuous treatment by generating the representations of covariates disentangled with the treatment variables. The DRL is a non-parametric model that eliminates both linear and nonlinear dependence between treatment and covariates. Specifically, we train the correlations between the de-confounded representations and the treatment variables against the correlations between the covariate representations and the treatment variables to eliminate confounding bias. Further, a counterfactual inference network is embedded into the framework to make the learned representations serve both de-confounding and trusted inference. Extensive experiments on synthetic datasets show that the DRL model performs superiorly in learning de-confounding representations and outperforms state-of-the-art counterfactual inference models for continuous treatment variables. In addition, we apply the DRL model to a real-world medical dataset MIMIC and demonstrate a detailed causal relationship between red cell width distribution and mortality.Comment: 15 pages,4 figure

    Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines

    Full text link
    The dearth of prescribing guidelines for physicians is one key driver of the current opioid epidemic in the United States. In this work, we analyze medical and pharmaceutical claims data to draw insights on characteristics of patients who are more prone to adverse outcomes after an initial synthetic opioid prescription. Toward this end, we propose a generative model that allows discovery from observational data of subgroups that demonstrate an enhanced or diminished causal effect due to treatment. Our approach models these sub-populations as a mixture distribution, using sparsity to enhance interpretability, while jointly learning nonlinear predictors of the potential outcomes to better adjust for confounding. The approach leads to human-interpretable insights on discovered subgroups, improving the practical utility for decision suppor

    Identification of Causal Relationship between Amyloid-beta Accumulation and Alzheimer's Disease Progression via Counterfactual Inference

    Full text link
    Alzheimer's disease (AD) is a neurodegenerative disorder that is beginning with amyloidosis, followed by neuronal loss and deterioration in structure, function, and cognition. The accumulation of amyloid-beta in the brain, measured through 18F-florbetapir (AV45) positron emission tomography (PET) imaging, has been widely used for early diagnosis of AD. However, the relationship between amyloid-beta accumulation and AD pathophysiology remains unclear, and causal inference approaches are needed to uncover how amyloid-beta levels can impact AD development. In this paper, we propose a graph varying coefficient neural network (GVCNet) for estimating the individual treatment effect with continuous treatment levels using a graph convolutional neural network. We highlight the potential of causal inference approaches, including GVCNet, for measuring the regional causal connections between amyloid-beta accumulation and AD pathophysiology, which may serve as a robust tool for early diagnosis and tailored care

    Counterfactual Explanations of Neural Network-Generated Response Curves

    Full text link
    Response curves exhibit the magnitude of the response of a sensitive system to a varying stimulus. However, response of such systems may be sensitive to multiple stimuli (i.e., input features) that are not necessarily independent. As a consequence, the shape of response curves generated for a selected input feature (referred to as "active feature") might depend on the values of the other input features (referred to as "passive features"). In this work we consider the case of systems whose response is approximated using regression neural networks. We propose to use counterfactual explanations (CFEs) for the identification of the features with the highest relevance on the shape of response curves generated by neural network black boxes. CFEs are generated by a genetic algorithm-based approach that solves a multi-objective optimization problem. In particular, given a response curve generated for an active feature, a CFE finds the minimum combination of passive features that need to be modified to alter the shape of the response curve. We tested our method on a synthetic dataset with 1-D inputs and two crop yield prediction datasets with 2-D inputs. The relevance ranking of features and feature combinations obtained on the synthetic dataset coincided with the analysis of the equation that was used to generate the problem. Results obtained on the yield prediction datasets revealed that the impact on fertilizer responsivity of passive features depends on the terrain characteristics of each field.Comment: Accepted to appear in the International Joint Conference on Neural Networks 202

    Reliable Off-Policy Learning for Dosage Combinations

    Full text link
    Decision-making in personalized medicine such as cancer therapy or critical care must often make choices for dosage combinations, i.e., multiple continuous treatments. Existing work for this task has modeled the effect of multiple treatments independently, while estimating the joint effect has received little attention but comes with non-trivial challenges. In this paper, we propose a novel method for reliable off-policy learning for dosage combinations. Our method proceeds along three steps: (1) We develop a tailored neural network that estimates the individualized dose-response function while accounting for the joint effect of multiple dependent dosages. (2) We estimate the generalized propensity score using conditional normalizing flows in order to detect regions with limited overlap in the shared covariate-treatment space. (3) We present a gradient-based learning algorithm to find the optimal, individualized dosage combinations. Here, we ensure reliable estimation of the policy value by avoiding regions with limited overlap. We finally perform an extensive evaluation of our method to show its effectiveness. To the best of our knowledge, ours is the first work to provide a method for reliable off-policy learning for optimal dosage combinations.Comment: Accepted at NeurIPS 202
    • …
    corecore