20,901 research outputs found

    Learning Concise Models from Long Execution Traces

    Full text link
    Abstract models of system-level behaviour have applications in design exploration, analysis, testing and verification. We describe a new algorithm for automatically extracting useful models, as automata, from execution traces of a HW/SW system driven by software exercising a use-case of interest. Our algorithm leverages modern program synthesis techniques to generate predicates on automaton edges, succinctly describing system behaviour. It employs trace segmentation to tackle complexity for long traces. We learn concise models capturing transaction-level, system-wide behaviour--experimentally demonstrating the approach using traces from a variety of sources, including the x86 QEMU virtual platform and the Real-Time Linux kernel

    Inferring Concise Specifications of APIs

    Get PDF
    Modern software relies on libraries and uses them via application programming interfaces (APIs). Correct API usage as well as many software engineering tasks are enabled when APIs have formal specifications. In this work, we analyze the implementation of each method in an API to infer a formal postcondition. Conventional wisdom is that, if one has preconditions, then one can use the strongest postcondition predicate transformer (SP) to infer postconditions. However, SP yields postconditions that are exponentially large, which makes them difficult to use, either by humans or by tools. Our key idea is an algorithm that converts such exponentially large specifications into a form that is more concise and thus more usable. This is done by leveraging the structure of the specifications that result from the use of SP. We applied our technique to infer postconditions for over 2,300 methods in seven popular Java libraries. Our technique was able to infer specifications for 75.7% of these methods, each of which was verified using an Extended Static Checker. We also found that 84.6% of resulting specifications were less than 1/4 page (20 lines) in length. Our technique was able to reduce the length of SMT proofs needed for verifying implementations by 76.7% and reduced prover execution time by 26.7%

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose
    corecore