2,135 research outputs found

    An Expressive Deep Model for Human Action Parsing from A Single Image

    Full text link
    This paper aims at one newly raising task in vision and multimedia research: recognizing human actions from still images. Its main challenges lie in the large variations in human poses and appearances, as well as the lack of temporal motion information. Addressing these problems, we propose to develop an expressive deep model to naturally integrate human layout and surrounding contexts for higher level action understanding from still images. In particular, a Deep Belief Net is trained to fuse information from different noisy sources such as body part detection and object detection. To bridge the semantic gap, we used manually labeled data to greatly improve the effectiveness and efficiency of the pre-training and fine-tuning stages of the DBN training. The resulting framework is shown to be robust to sometimes unreliable inputs (e.g., imprecise detections of human parts and objects), and outperforms the state-of-the-art approaches.Comment: 6 pages, 8 figures, ICME 201

    Movie Description

    Get PDF
    Audio Description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. In total the Large Scale Movie Description Challenge (LSMDC) contains a parallel corpus of 118,114 sentences and video clips from 202 movies. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are indeed more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in a challenge organized in the context of the workshop "Describing and Understanding Video & The Large Scale Movie Description Challenge (LSMDC)", at ICCV 2015

    Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks

    Full text link
    Existing question answering methods infer answers either from a knowledge base or from raw text. While knowledge base (KB) methods are good at answering compositional questions, their performance is often affected by the incompleteness of the KB. Au contraire, web text contains millions of facts that are absent in the KB, however in an unstructured form. {\it Universal schema} can support reasoning on the union of both structured KBs and unstructured text by aligning them in a common embedded space. In this paper we extend universal schema to natural language question answering, employing \emph{memory networks} to attend to the large body of facts in the combination of text and KB. Our models can be trained in an end-to-end fashion on question-answer pairs. Evaluation results on \spades fill-in-the-blank question answering dataset show that exploiting universal schema for question answering is better than using either a KB or text alone. This model also outperforms the current state-of-the-art by 8.5 F1F_1 points.\footnote{Code and data available in \url{https://rajarshd.github.io/TextKBQA}}Comment: ACL 2017 (short

    Layer-wise Representation Fusion for Compositional Generalization

    Full text link
    Despite successes across a broad range of applications, sequence-to-sequence models' construct of solutions are argued to be less compositional than human-like generalization. There is mounting evidence that one of the reasons hindering compositional generalization is representations of the encoder and decoder uppermost layer are entangled. In other words, the syntactic and semantic representations of sequences are twisted inappropriately. However, most previous studies mainly concentrate on enhancing token-level semantic information to alleviate the representations entanglement problem, rather than composing and using the syntactic and semantic representations of sequences appropriately as humans do. In addition, we explain why the entanglement problem exists from the perspective of recent studies about training deeper Transformer, mainly owing to the ``shallow'' residual connections and its simple, one-step operations, which fails to fuse previous layers' information effectively. Starting from this finding and inspired by humans' strategies, we propose \textsc{FuSion} (\textbf{Fu}sing \textbf{S}yntactic and Semant\textbf{i}c Representati\textbf{on}s), an extension to sequence-to-sequence models to learn to fuse previous layers' information back into the encoding and decoding process appropriately through introducing a \emph{fuse-attention module} at each encoder and decoder layer. \textsc{FuSion} achieves competitive and even \textbf{state-of-the-art} results on two realistic benchmarks, which empirically demonstrates the effectiveness of our proposal.Comment: work in progress. arXiv admin note: substantial text overlap with arXiv:2305.1216
    • …
    corecore